
PHP

K.PazhaniKumar
Course-Incharge,P.G. Dept of Computer Science

S.T.Hindu College

Nagercoil

PHP Hypertext Preprocessor

PHP was conceived by Rasmus Lerdorf

 PHP is a widely-used general-purpose

scripting language that is especially suited for

Web development and can be embedded into

HTML.

 PHP is the recursive acronym for “PHP:

Hypertext Preprocessor”.

 It is a server side scripting language. The PHP

code is ran on the webserver and then the

output is returned to the user through a web

browser.

.

mailto:rasmus@lerdorf.on.ca

Usage statistics and market share of

PHP for websites
81.8% websites were developed using PHP

Popular sites using PHP
Facebook.com

Wikipedia.org

Qq.com

Taobao.com

Sina.com.cn

Wordpress.com

Vk.com

Weibo.com

Babylon.com

Mail.ru

PHP
PHP use has increased dramatically over the last 5 years.

The main reasons for its popularity are:

 It is open-source and free!

 Easy to use. It has a very simple syntax unlike other languages

such as Perl or C. Rather than writing lots of code to create a

webpage, we create HTML documents and embed simple PHP

codes into them.

 It has multi-platform support. It supports all major operating

systems. Moreover, the syntax is consistent among different

platforms. We can create PHP codes in Windows and easily

switch to Unix.

 PHP supports many new technologies. In particular, it supports

MySQL.

What is a PHP File?

 PHP files can contain text, HTML, CSS,

JavaScript, and PHP code

 PHP code are executed on the server, and

the result is returned to the browser as plain

HTML

 PHP files have extension ".php"

What Can PHP Do?

 PHP can generate dynamic page content

 PHP can create, open, read, write, delete, and

close files on the server

 PHP can collect form data

 PHP can send and receive cookies

 PHP can add, delete, modify data in our

database

 PHP can restrict users to access some pages on

your website

 PHP can encrypt data

Why PHP?

 PHP runs on various platforms (Windows,

Linux, Unix, etc.)

 PHP is compatible with almost all servers

used today (Apache, IIS, etc.)

 PHP supports a wide range of databases

 PHP is free. Download it from the official PHP

resource: www.php.net

 PHP is easy to learn and runs efficiently on

the server side

http://www.php.net/

Creating a Simple PHP file

All PHP commands are enclosed within special

start and end tags:

<?php

…PHP code…

?>

SIMPLE PHP PROGRAM

<!DOCTYPE html>

<html>

<body>

<?php

echo "My first PHP script!";

?>

</body>

</html>

WampServer

WampServer is a Windows web development

environment. It allows you to create web

applications with PHP and a MySQL

database. Alongside, PhpMyAdmin allows us

to manage easily our databases.

We can download it from the site

http://www.wampserver.com/en/

Installing WampServer
 Double click on the downloaded file and just follow the instructions.

Everything is automatic. The WampServer package is delivered with the

latest releases of Apache, MySQL and PHP.

 The “www” directory will be automatically created (usually c:\wamp\www)

 Create a subdirectory in “www” and put your PHP files inside.

 Click on the “localhost” link in the WampSever menu or open your internet

browser and go to the URL : http://localhost

Create a folder in WWW

Starting Wamp Server

P1.php

Open IE

Variable
A variable in PHP can be used to store both numeric and nonnumeric data.

 Every variable has a name, which is preceded by a dollar ($) symbol.

 Variable names are case sensitive and they must begin with a letter or underscore

character.

We can replace the PHP code above with:

<?php

//define variable

$answer = 'A: Chameleon';

//print output

Echo "<h2><i>$answer</i></h2>";

?>

This will produce the same result as before.

 To assign a value to a variable, use the equality (=) symbol (ex: $answer = ‘A:

Chameleon’;).

 To use a variable value in our script, call the variable by its name. PHP will substitute

its value when the code is executed (ex: Echo “<h2><i>$answer</i></h2>”;).

Data Types

There are four basic data types in PHP. PHP can automatically

determine the variable type by the context in which it is being used.

Data Type Description Example

Boolean Specifies a true or false

value.

$auth = true;

Integer Integers like -98, 2000. $age = 28;

Floating-point Fractional numbers such

as 12.8 or 3.149391

$temp = 76;

String Sequence of characters.

May be enclosed in either

double quotes or single

quotes.

$name = ‘Ismail’;

Operators

There are over 15 operators in PHP

Operator What It Does

= Assignment

+ Addition

- Subtraction

* Multiplication

/ Division, returns quotient

% Division, returns modulus

. String concatenation

= = Equal to

= = = Equal to and of the same type

! = = Not equal to or not of the same type

<> Not equal to

<, <=, >, >= Less than, Less than or equal to etc.

&& Logical AND

|| Logical OR

xor Logical XOR

! Logical NOT

Conditional Statement
<?php

if (conditional test)

{

do this;

}

if (conditional test)

{

do this;

}

else

{

do this;

}

?>

Example

<?php

if ($temp >= 100)

{

echo 'Very hot!';

}

else

{

echo 'Within tolerable limits';

}

?>

Switch Statement

switch (n)

{

case label1:

code to be executed if n=label1;

break;

case label2:

code to be executed if n=label2;

break;

default:

code to be executed if n is different from both label1 and

label2;

}

Example
<?php

$favcolor="red";

switch ($favcolor)

{

case "red":

echo "Your favorite color is red!";

break;

case "blue":

echo "Your favorite color is blue!";

break;

case "green":

echo "Your favorite color is green!";

break;

default:

echo "Your favorite color is neither red, blue, or green!";

}

?>

Looping Statements-while

<?php

// define number and limits for multiplication tables

$num = 11;

$upperLimit = 10;

$lowerLimit = 1;

// loop and multiply to create table

while ($lowerLimit <= $upperLimit)

{

echo "$num x $lowerLimit =" . ($num*$lowerLimit);

$lowerLimit++;

}

?>

Looping Statements-do while

<?php

// define number and limits for multiplication tables

$num = 11;

$upperLimit = 10;

$lowerLimit = 12;

// loop and multiply to create table

do

{

echo "$num x $lowerLimit =" . ($num*$lowerLimit);

$lowerLimit++;

} while ($lowerLimit <= $upperLimit)

?>

Looping Statements-for

<?php

for ($x = 2; $x <=100; $x++)

{

echo "$x";

}

?>

Arrays
An array is a data structure that stores one or more similar type of

values in a single value. For example if we want to store 100

numbers then instead of defining 100 variables its easy to define an

array of 100 length.

There are three different kind of arrays and each array value is

accessed using an ID which is called array index.

Numeric array - An array with a numeric index. Values are stored and

accessed in linear fashion

Associative array - An array with strings as index. This stores element

values in association with key values rather than in a strict linear

index order.

Multidimensional array - An array containing one or more arrays and

values are accessed using multiple indices

Numeric Array
 These arrays can store numbers, strings and any object but their

index will be represented by numbers. By default array index starts

from zero.
<html>

<body>

<?php

/* First method to create array. */

$numbers = array(1, 2, 3, 4, 5);

foreach($numbers as $value)

{

echo "Value is $value
";

}

/* Second method to create array. */

$numbers[0] = "one";

$numbers[1] = "two";

$numbers[2] = "three";

$numbers[3] = "four";

$numbers[4] = "five";

foreach($numbers as $value)

{

echo "Value is $value
";

}

?>

</body>

</html>

The foreach loop is used to loop through arrays

Associative Array

The associative arrays are very similar to numeric arrays in

term of functionality but they are different in terms of

their index. Associative array will have their index as

string so that we can establish a strong association

between key and values.

To store the salaries of employees in an array, a

numerically indexed array would not be the best choice.

Instead, we could use the employees names as the keys

in our associative array, and the value would be their

respective salary.

Example
<html>

<body>

<?php

/* First method to associate create array. */

$salaries = array(

"mohammad" => 2000,

"qadir" => 1000,

"zara" => 500

);

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

/* Second method to create array. */

$salaries['mohammad'] = "high";

$salaries['qadir'] = "medium";

$salaries['zara'] = "low";

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

?>

</body>

</html>

Multidimensional Array
A multi-dimensional array each element in the main array can also be

an array. And each element in the sub-array can be an array, and so

on. Values in the multi-dimensional array are accessed using

multiple index.
<html>

<body>

<?php

$marks = array(

"mohammad" => array

(

"physics" => 35,

"maths" => 30,

"chemistry" => 39

),

"qadir" => array

(

"physics" => 30,

"maths" => 32,

"chemistry" => 29

),

);

/* Accessing multi-dimensional array values */

echo "Marks for mohammad in physics : " ;

echo $marks['mohammad']['physics'] . "
";

echo "Marks for qadir in maths : ";

echo $marks['qadir']['maths'] . "
";

?>

</body>

</html>

Strings

They are sequences of characters, like "PHP supports string

operations".
$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';

print($literally);

$literally = "My $variable will print!\\n";

print($literally);

?>

This will produce following result:

My $variable will not print!\n

My name will print

Functions:strlen,strrev,strtolower,strtoupper,strncmp,substr,

Web Concepts

Identifying Browser & Platform

PHP creates some useful environment variables that can be seen in the phpinfo.php

page that was used to setup the PHP environment.

One of the environemnt variables set by PHP is HTTP_USER_AGENT which identifies

the user's browser and operating system.

PHP provides a function getenv() to access the value of all the environment variables.

The information contained in the HTTP_USER_AGENT environment variable can be

used to create dynamic content appropriate to the borwser.

Example
<html>

<body>

<?php

$viewer = getenv("HTTP_USER_AGENT");

$browser = "An unidentified browser";

if(preg_match("/MSIE/i", "$viewer"))

{

$browser = "Internet Explorer";

}

else if(preg_match("/Netscape/i", "$viewer"))

{

$browser = "Netscape";

}

else if(preg_match("/Mozilla/i", "$viewer"))

{

$browser = "Mozilla";

}

$platform = "An unidentified OS!";

if(preg_match("/Windows/i", "$viewer"))

{

$platform = "Windows!";

}

else if (preg_match("/Linux/i", "$viewer"))

{

$platform = "Linux!";

}

echo("You are using $browser on $platform");

?>

</body>

</html>

Another example

<html>

<head>Test page</head>

<body>

The time is now

<?php

echo(date("l dS \of F Y h:i:s A") . "
");

?>

<hr>

</body>

</html>

Output:

Using HTML Forms

The most important thing to notice when dealing with HTML forms and PHP is

that any form element in an HTML page will automatically be available to

our PHP scripts.
<?php

if($_POST["name"] || $_POST["age"])

{

echo "Welcome ". $_POST['name']. "
";

echo "You are ". $_POST['age']. " years old.";

exit();

}

?>

<html>

<body>

<form action="<?php $_PHP_SELF ?>" method="POST">

Name: <input type="text" name="name" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

The PHP default variable $_PHP_SELF is

used for the PHP script name and when

you click "submit" button then same PHP

script will be called

Processing HTML Forms-

welcome.html
<html>

<body>

<form action="welcome.php" method="post">

Name: <input type="text" name="name">

Age: <input type="text" name="age">

<input type="submit">

</form>

</body>

</html>

Welcome.php

<html>

<body>

Welcome <?php echo $_POST["name"]; ?>.

You are <?php echo $_POST["age"]; ?> years old.

</body>

</html>

Output

Get & Post Method

There are two ways the browser client can send information to the web server.

The GET Method

The POST Method

Before the browser sends the information, it encodes it using a scheme called URL

encoding. In this scheme, name/value pairs are joined with equal signs and different

pairs are separated by the ampersand.

name1=value1&name2=value2&name3=value3

Spaces are removed and replaced with the + character and any other nonalphanumeric

characters are replaced with a hexadecimal values. After the information is encoded

it is sent to the server.

Get Method
The GET method sends the encoded user information appended to the page request.

The page and the encoded information are separated by the ?

character.http://www.test.com/index.htm?name1=value1&name2=value2

The GET method produces a long string that appears in your server logs, in the

browser's Location: box.

The GET method is restricted to send upto 1024 characters only.

Never use GET method if we have password or other sensitive information to be sent to

the server.

GET can't be used to send binary data, like images or word documents, to the server.

The data sent by GET method can be accessed using QUERY_STRING environment

variable.

The PHP provides $_GET associative array to access all the sent information using GET

method.

Example

<?php

if($_GET["name"] || $_GET["age"])

{

echo "Welcome ". $_GET['name']. "
";

echo "You are ". $_GET['age']. " years old.";

exit();

}

?>

<html>

<body>

<form action="<?php $_PHP_SELF ?>" method="GET">

Name: <input type="text" name="name" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

Post Method

The POST method transfers information via HTTP headers. The information is

encoded as described in case of GET method and put into a header called

QUERY_STRING.

The POST method does not have any restriction on data size to be sent.

The POST method can be used to send ASCII as well as binary data.

The data sent by POST method goes through HTTP header so security

depends on HTTP protocol. By using Secure HTTP we can make sure that

your information is secure.

The PHP provides $_POST associative array to access all the sent information

using GET method.

Example
<?php

if($_POST["name"] || $_POST["age"])

{

echo "Welcome ". $_POST['name']. "
";

echo "You are ". $_POST['age']. " years old.";

exit();

}

?>

<html>

<body>

<form action="<?php $_PHP_SELF ?>" method="POST">

Name: <input type="text" name="name" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

$_REQUEST variable
The PHP $_REQUEST variable can be used to get the result from form data sent with both the GET

and POST methods.

<?php

if($_REQUEST["name"] || $_REQUEST["age"])

{

echo "Welcome ". $_REQUEST['name']. "
";

echo "You are ". $_REQUEST['age']. " years old.";

exit();

}

?>

<html>

<body>

<form action="<?php $_PHP_SELF ?>" method="POST">

Name: <input type="text" name="name" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

Functions

PHP functions are similar to other programming languages. A function is a

piece of code which takes one more input in the form of parameter and

does some processing and returns a value.

There are two part.

Creating a PHP Function

Calling a PHP Function

Creating PHP Function
Its very easy to create our own PHP function. Suppose we want to create a PHP function which will

simply write a simple message on our browser when we will call it. Following example creates a

function called writeMessage() and then calls it just after creating it.

<html>

<head>

<title>Writing PHP Function</title>

</head>

<body>

<?php

/* Defining a PHP Function */

function writeMessage()

{

echo "You are really a nice person, Have a nice time!";

}

/* Calling a PHP Function */

writeMessage();

?>

</body></html>

Function with parameters
PHP gives you option to pass your parameters inside a function. You can pass as many

as parameters your like. These parameters work like variables inside our function.

Following example takes two integer parameters and add them together and then print

them.
<html>

<head>

<title>Writing PHP Function with Parameters</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

echo "Sum of the two numbers is : $sum";

}

addFunction(10, 20);

?>

</body>

</html>

Passing Arguments by Reference
It is possible to pass arguments to functions by reference. This means that a

reference to the variable is manipulated by the function rather than a copy

of the variable's value.
<html><head>

<title>Passing Argument by Reference</title>

</head><body>

<?php

function addFive($num)

{

$num += 5;

}

function addSix(&$num)

{

$num += 6;

}

$orignum = 10;

addFive(&$orignum);

echo "Original Value is $orignum
";

addSix($orignum);

echo "Original Value is $orignum
";

?></body></html>

PHP Functions retruning value:

A function can return a value using the return

statement in conjunction with a value or

object. return stops the execution of the

function and sends the value back to the

calling code.

We can return more than one value from a

function using return array(1,2,3,4).

Example

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

return $sum;

}

$return_value = addFunction(10, 20);

echo "Returned value from the function : $return_value”

?>

</body>

</html>

Error Handling

 Die()

 Custom Error Handling Function

error_function(error_level,error_message,

error_file,error_line,error_context);

Example

<?php

if(!file_exists("/tmp/test.txt"))

{

die("File not found");

}

else

{

$file=fopen("/tmp/test.txt","r");

print "Opend file sucessfully";

}

// Test of the code here. ?>

Exception Handling

 Try

 Catch

 throw

Example

<?php

try {

$error = 'Always throw this error';

throw new Exception($error);

// Code following an exception is not executed.

echo 'Never executed';

}

catch (Exception $e)

{

echo 'Caught exception: ', $e->getMessage(), "\n"; }

// Continue execution

echo 'Hello World';

?>

Cookies
Cookies are text files stored on the client computer and they are kept of use

tracking purpose. PHP transparently supports HTTP cookies.

There are three steps involved in identifying returning users:

Server script sends a set of cookies to the browser. For example name, age, or

identification number etc.

Browser stores this information on local machine for future use.

When next time browser sends any request to web server then it sends those

cookies information to the server and server uses that information to identify

the user.

Setting Cookies with PHP:
PHP provided setcookie() function to set a cookie. This function requires upto six

arguments and should be called before <html> tag. For each cookie this function has

to be called separately.

setcookie(name, value, expire, path, domain, security);

Here is the detail of all the arguments:

Name - This sets the name of the cookie and is stored in an environment variable called

HTTP_COOKIE_VARS. This variable is used while accessing cookies.

Value -This sets the value of the named variable and is the content that you actually want to store.

Expiry - This specify a future time in seconds since 00:00:00 GMT on 1st Jan 1970. After this time

cookie will become inaccessible. If this parameter is not set then cookie will automatically expire

when the Web Browser is closed.

Path -This specifies the directories for which the cookie is valid. A single forward slash character

permits the cookie to be valid for all directories.

Domain - This can be used to specify the domain name in very large domains and must contain at

least two periods to be valid. All cookies are only valid for the host and domain which created

them.

Security - This can be set to 1 to specify that the cookie should only be sent by secure transmission

using HTTPS otherwise set to 0 which mean cookie can be sent by regular HTTP.

Example

<?php

setcookie("name", "John Watkin", time()+3600, "/","", 0);

setcookie("age", "36", time()+3600, "/", "", 0);

?>

<html>

<head>

<title>Setting Cookies with PHP</title>

</head>

<body>

<?php echo "Set Cookies"?>

</body>

</html>

Accessing Cookies with PHP

PHP provides many ways to access cookies.Simplest way is to use either $_COOKIE or

$HTTP_COOKIE_VARS variables.

<html>

<head>

<title>Accessing Cookies with PHP</title>

</head>

<body>

<?php

echo $_COOKIE["name"]. "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"]. "
";

echo $_COOKIE["age"] . "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"] . "
";

?>

</body>

</html>

You can use isset() function to check if a cookie

is set or not.
<html>

<head>

<title>Accessing Cookies with PHP</title>

</head>

<body>

<?php

if(isset($_COOKIE["name"]))

echo "Welcome " . $_COOKIE["name"] . "
";

else

echo "Sorry... Not recognized" . "
";

?>

</body>

</html>

Deleting Cookie with PHP

Officially, to delete a cookie you should call setcookie() with the name argument only but

this does not always work well, however, and should not be relied on.

It is safest to set the cookie with a date that has already expired:

<?php

setcookie("name", "", time()- 60, "/","", 0);

setcookie("age", "", time()- 60, "/","", 0);

?>

<html>

<head>

<title>Deleting Cookies with PHP</title>

</head>

<body>

<?php echo "Deleted Cookies" ?>

</body>

</html>

Session

An alternative way to make data accessible

across the various pages of an entire website

is to use a PHP Session.

A session creates a file in a temporary directory

on the server where registered session

variables and their values are stored. This

data will be available to all pages on the site

during that visit.

Starting a PHP Session:

A PHP session is easily started by making a call to

the session_start() function.This function first

checks if a session is already started and if none

is started then it starts one. It is recommended to

put the call to session_start() at the beginning of

the page.

Session variables are stored in associative array

called $_SESSION[]. These variables can be

accessed during lifetime of a session.

.

Example The following example starts a session then register a

variable called counter that is incremented each time the page is visited during

the session.Make use of isset() function to check if session variable is already set

or not
<?php

session_start();

if(isset($_SESSION['counter']))

{

$_SESSION['counter'] += 1;

}

else

{

$_SESSION['counter'] = 1;

}

$msg = "You have visited this page ". $_SESSION['counter'];

$msg .= "in this session.";

?>

<html>

<head>

<title>Setting up a PHP session</title>

</head>

<body>

<?php echo ($msg); ?>

</body>

</html>

Destroying a PHP Session:

A PHP session can be destroyed by session_destroy() function. This function

does not need any argument and a single call can destroy all the session

variables. If we want to destroy a single session variable then we can use

unset() function to unset a session variable.

Here is the example to unset a single variable:

<?php

unset($_SESSION['counter']);

?>

Here is the call which will destroy all the session variables

:<?php

session_destroy();

?>

Object Oriented Programming in PHP

The general form for defining a new class in PHP is as follows:

<?php

class phpClass{

var $var1;

var $var2 = "constant string";

function myfunc ($arg1, $arg2) {

[..]

}

[..]

}

?>

Here is the description of each line:

The special form class, followed by the name of the class that you want to define.

A set of braces enclosing any number of variable declarations and function definitions.

Variable declarations start with the special form var, which is followed by a conventional $ variable

name; they may also have an initial assignment to a constant value.

Function definitions look much like standalone PHP functions but are local to the class and will be

used to set and access object data.

Class
<?php

class Books{

/* Member variables */ var $price; var $title;

/* Member functions */

function setPrice($par){

$this->price = $par; }

function getPrice(){

echo $this->price ."
“; }

function setTitle($par){

$this->title = $par; }

function getTitle(){

echo $this->title ."
“; } }

$physics = new Books; $maths = new Books; $chemistry = new Books;

$physics->setTitle("Physics for High School"); $chemistry->setTitle("Advanced Chemistry");

$maths->setTitle("Algebra");

$physics->setPrice(10); $chemistry->setPrice(15); $maths->setPrice(7);

$physics->getTitle(); $chemistry->getTitle(); $maths->getTitle();

$physics->getPrice(); $chemistry->getPrice(); $maths->getPrice();

?>

Output:

PHP-MySQL

PHP will work with virtually all database

software, including Oracle and Sybase but

most commonly used is freely available

MySQL database

Opening Database Connection:

PHP provides mysql_connect function to open a database connection. This

function takes five parameters and returns a MySQL link identifier on

success, or FALSE on failure.

Syntax:connection mysql_connect(server,user,passwd,new_link,client_flag);
server Optional - The host name running database server. If not specified then default value is

localhost:3036.

user Optional - The username accessing the database. If not specified then default is the name of the

user that owns the server process.

passwd Optional - The password of the user accessing the database. If not specified then default is an

empty password.

new_link Optional - If a second call is made to mysql_connect() with the same arguments, no new

connection will be established; instead, the identifier of the already opened connection will be returned.

client_flagsOptional - A combination of the following constants:

MYSQL_CLIENT_SSL - Use SSL encryption

MYSQL_CLIENT_COMPRESS - Use compression protocol

MYSQL_CLIENT_IGNORE_SPACE - Allow space after function names

MYSQL_CLIENT_INTERACTIVE - Allow interactive timeout seconds of inactivity before closing the

connection

Closing Database Connection:

Its simplest function mysql_close PHP provides

to close a database connection. This function

takes connection resource returned by

mysql_connect function. It returns TRUE on

success or FALSE on failure.

Syntax:bool

mysql_close (resource $link_identifier);

If a resource is not specified then last opend

database is closed.

Example

<?php

$dbhost = 'localhost';

$dbuser = ‘root';

$dbpass = ‘';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_close($conn);

?>

Creating a Database:

To create and delete a database we should have admin

priviledge. Its very easy to create a new MySQL

database. PHP uses mysql_query function to create a

MySQL database. This function takes two parameters

and returns TRUE on success or FALSE on failure.

Syntax:bool mysql_query(sql, connection);

sql Required - SQL query to create a database

connection Optional - if not specified then last opened

connection by mysql_connect will be used.

Example
<?php

$dbhost = 'localhost:';

$dbuser = 'root';

$dbpass = ‘';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

$sql = 'CREATE Database test_db';

$retval = mysql_query($sql, $conn);

if(! $retval)

{

die('Could not create database: ' . mysql_error());

}

echo "Database test_db created successfully\n";

mysql_close($conn);

?>

Selecting a Database:

Once we establish a connection with a database server then it is required

to select a particular database where our all the tables are associated.

This is required because there may be multiple databases residing on a

single server and we can do work with a single database at a time.

PHP provides function mysql_select_db to select a database.It returns

TRUE on success or FALSE on failure.

Syntax:bool mysql_select_db(db_name, connection);

db_name Required - Database name to be selected

connection Optional - if not specified then last opened connection

by mysql_connect will be used.

Example

<?php

$dbhost = 'localhost';

$dbuser = ‘root';

$dbpass = ‘';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_select_db('test_db');

mysql_close($conn);

?>

Creating Database Tables:
<?php

$dbhost = 'localhost';

$dbuser = 'root';

$dbpass = ‘';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

$sql = 'CREATE TABLE employee('.

'emp_id INT NOT NULL AUTO_INCREMENT, '.

'emp_name VARCHAR(20) NOT NULL, '.

'emp_address VARCHAR(20) NOT NULL, '.

'emp_salary INT NOT NULL, '.

'join_date timestamp(14) NOT NULL, '.

'primary key (emp_id))';

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

die('Could not create table: ' . mysql_error());

}

echo "Table employee created successfully\n";

mysql_close($conn);

?>

Insert data into MySQL
<?php

$dbhost = 'localhost:';

$dbuser = 'root';

$dbpass = ‘';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

$sql = 'INSERT INTO employee '.

'(emp_name,emp_address, emp_salary, join_date) '.

'VALUES ("guest", "XYZ", 2000, NOW())';

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

die('Could not enter data: ' . mysql_error());

}

echo "Entered data successfully\n";

mysql_close($conn);

?>

Getting Data From MySQL Database
<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT emp_id, emp_name, emp_salary FROM employee';

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

die('Could not get data: ' . mysql_error());

}

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{

echo "EMP ID :{$row['emp_id']}
 ".

"EMP NAME : {$row['emp_name']}
 ".

"EMP SALARY : {$row['emp_salary']}
 ".

"--------------------------------
";

}

echo "Fetched data successfully\n";

mysql_close($conn);

?>

Updating Data into MySQL Database
<html>

<head>

<title>Update a Record in MySQL Database</title>

</head>

<body>

<?php

if(isset($_POST['update']))

{

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

$emp_id = $_POST['emp_id'];

$emp_salary = $_POST['emp_salary'];

$sql = "UPDATE employee ".

"SET emp_salary = $emp_salary ".

"WHERE emp_id = $emp_id" ;

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

die('Could not update data: ' . mysql_error());

}

echo "Updated data successfully\n";

mysql_close($conn);

}

else

{

?>

<form method="post" action="<?php $_PHP_SELF ?>">

<table width="400" border="0" cellspacing="1" cellpadding="2">

<tr>

<td width="100">Employee ID</td>

<td><input name="emp_id" type="text" id="emp_id"></td>

</tr>

<tr>

<td width="100">Employee Salary</td>

<td><input name="emp_salary" type="text" id="emp_salary"></td>

</tr>

<tr>

<td width="100"> </td>

<td> </td>

</tr>

<tr>

<td width="100"> </td>

<td>

<input name="update" type="submit" id="update" value="Update">

</td>

</tr>

</table>

</form>

<?php

}

?>

</body>

</html>

Deleting Data from MySQL Database

<?php

if(isset($_POST['delete']))

{

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

die('Could not connect: ' . mysql_error());

}

$emp_id = $_POST['emp_id'];

$sql = "DELETE employee ".

"WHERE emp_id = $emp_id" ;

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

die('Could not delete data: ' . mysql_error());

}

echo "Deleted data successfully\n";

mysql_close($conn);

