Reg. No. :

Code No. : 20571 B Sub. Code : SMMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

First Semester
Mathematics - Main

CALCULUS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. ஒரு வளைவரையின் வளைவு மையத்தின் நியமப் பாதை ___ ஆகும்.
(அ) நேர்கோடு (ஆ) வட்டங்கள்
(இ) செங்கோட்டுத்தழுவி (ஈ) பரவளையம்
The locus of the center of curvature for a curve is
\qquad —.
(a) Straight line
(b) Circles
(c) Evolute
(d) Parabola
2. ஒரு வட்டத்தின் ஆரம் r எனில் அதன் வளைவு ஆரம்
\qquad .
(அ) r
(ஆ) $\frac{1}{r}$
(இ) r^{2}
(ஈ) $\frac{1}{r^{2}}$

If the radius of a circle is r, then its radius of curvature is
(a) r
(b) $\frac{1}{r}$
(c) r^{2}
(d) $\frac{1}{r^{2}}$
3. ஒரு நெஞ்சு வளையின் p-r சமன்பாடு ஆகும்.
$\begin{array}{ll}\text { (அ) } p^{2}=r & \text { (ஆ) } p=r\end{array}$
(இ) $p=r^{2}$
(ஈ) $p^{2}=\frac{r^{3}}{2 \alpha}$
The p-r equation of the cardioid is \qquad .
(a) $p^{2}=r$
(b) $p=r$
(c) $p=r^{2}$
(d) $p^{2}=\frac{r^{3}}{2 a}$

Page 2 Code No. : 20571 B
4. $y^{2}=4 a x$ என்ற பரவளையத்த்ற்கு \qquad _.
(அ) தொலலத்தொடுகோடு இருக்காது
(ஆ) ஒரு தொலலத்தொடுகோடு இருக்கும்
(இ) 4 தொலைத்தொடுகோடு இருக்கும்
(ஈ) இரண்டு தொலலத்தொடுகோடு இருக்கும்
The parabola $y^{2}=4 a x$ has \qquad .
(a) no asymptotes
(b) one asymptotes
(c) 4 asymptotes
(d) two asymptotes
5. ஒரு வளைவரையின் இரு கிறைகள் ஒரு புள்ளி வழியே சென்றால் அந்த புள்ளி \qquad புள்ளி ஆகும்.

(அ) தனித்த	(ஆ) கணுப்
(இ) இரட்டைப்	(ஈ) முகடு

If two branches of a curve pass through a point then it is called a \qquad point.
(a) singular
(b) node
(c) double
(d) cusp
6. ஒரு புள்ளியானது கணுப்புள்ளி எனில் $\left(f_{x y}\right)^{2}$ $\longrightarrow f_{x x} f_{y y}$.
(அ) <
(ஆ) $>$
(இ) =
(ஈ) \neq

Page 3 Code No. : 20571 B

A point is a node if $\left(f_{x y}\right)^{2}$
(a) $<$
(b) $>$
(c) $=$
(d) \neq
7. $\int_{0}^{1} \int_{0}^{2} x y^{2} d y d x=$
(அ) $\frac{4}{3}$
(ஆ) $\frac{3}{4}$
(இ) 4
(ஈ) $\frac{3}{2}$
$\int_{0}^{1} \int_{0}^{2} x y^{2} d y d x=$ \qquad
(a) $\frac{4}{3}$
(b) $\frac{3}{4}$
(c) 4
(d) $\frac{3}{2}$
8. $\int_{0}^{\infty} e^{-x^{2}} d x=$ \qquad
(அ) $\frac{\pi}{2}$
(ஆ) $\frac{\sqrt{\pi}}{2}$
(இ) π
(ஈ) ∞

Page 4 Code No. : 20571 B

$$
\int_{0}^{\infty} e^{-x^{2}} d x=
$$

\qquad .
(a) $\frac{\pi}{2}$
(b) $\frac{\sqrt{\pi}}{2}$
(c) π
(d) ∞
9. $\sqrt{n+1}=$ \qquad
(அ) n
(ஆ) $n+1$
(இ) 1
(ஈ) n !
$\sqrt{n+1}=$ \qquad
(a) n
(b) $n+1$
(c) 1
(d) n !
10. $\beta\left(\frac{1}{2}, \frac{1}{2}\right)=$ \qquad
(அ) $\frac{\pi}{2}$
(ஆ) $\frac{\sqrt{\pi}}{2}$
(இ) π
(ஈ) $\sqrt{\pi}$
$\beta\left(\frac{1}{2}, \frac{1}{2}\right)=$ \qquad
(a) $\frac{\pi}{2}$
(b) $\frac{\sqrt{\pi}}{2}$
(c) π
(d) $\sqrt{\pi}$

Page 5 Code No. : 20571 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) $y=c \cosh \frac{x}{c}$ என்ற வளைவரையின் வளைவு ஆரம் அந்த வளைவரைக்கு x-அச்சுக்கும் இடைப்பட்ட செங்குத்து கோட்டின் நீளத்திற்கு சமம் எனக் காட்டுக.
Show that the radius of curvature of the curve $y=c \cosh \frac{x}{c}$ is equal to the length of the portion of the normal intercepted between the curve and the x-axis.

Or
(ஆ) $y^{2}=x^{3}+8$ என்ற வளைவரைக்கு $(-2,0)$ என்ற புள்ளியில் வளைவு ஆரம் காண்க.

Find the radius of curvature $y^{2}=x^{3}+8$ at $(-2,0)$.
12. (அ) $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0 \quad$ என்ற வளைவரையின் தொமைத் தொடுகோடுெள் காண்க.

Find the asymptotes of the curve $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$.

Or
Page 6 Code No. : 20571 B
(ஆ) $a+r \sin \theta=0$ என்ற வளைவரையின் $\mathrm{p}-\mathrm{r}$ சமன்பாட்டைக் காண்க.

Find the p-r equation of the curve $a+r \sin \theta=0$.
13. (அ) $y^{2}\left(\alpha^{2}+x^{2}\right)=x^{2}\left(\alpha^{2}-x^{2}\right)$ என்ற வளைவரையை வரைக.

Trace the curve $y^{2}\left(a^{2}+x^{2}\right)=x^{2}\left(a^{2}-x^{2}\right)$.
Or
(ஆ) $x^{4}-2 a y^{3}-3 a^{2} y^{2}-2 a^{2} x^{2}+a^{4}=0 \quad$ என்ற வளைவரையின் இரட்டைப் புள்ளிகளை ஆராய்க.

Examine the double points of the curve $x^{4}-2 a y^{3}-3 a^{2} y^{2}-2 a^{2} x^{2}+a^{4}=0$.
14. (அ) $x^{2}+y^{2}=a^{2}$ என்ற வட்டத்தின் மிகை கால் வட்டப்பகுதியில் $\iint x y d x d y$ என்பதன் மதிப்பு காண்க.

Find the value of $\iint x y d x d y$ taken over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$.

Or

Page 7 Code No. : 20571 B

$$
\begin{array}{lll}
\text { (ஆ) } x^{2}+y^{2} \leq 1 & \text { என்ற } & \text { வட்டப்பகுதியில் } \\
\iint x^{2} y^{2} d x d y \text {-ஐக் கணக்கிடுக. } &
\end{array}
$$

Evaluate $\iint x^{2} y^{2} d x d y$ over the circular area $x^{2}+y^{2} \leq 1$.
15. (அ) $\quad \beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$ என நிரூபி.

Prove that $\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$.

$$
\begin{gathered}
\text { Or } \\
\text { (ஆ) } \int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=\frac{\pi}{\sqrt{2}} \text { என நிரூப. } \\
\text { Prove that } \int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=\frac{\pi}{\sqrt{2}} .
\end{gathered}
$$

PART C - $(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) $x^{4}+y^{4}=2$ என்ற வளைவரையின் வளைவு ஆரத்தை $(1,1)$ என்ற புள்ளியில் காண்க.
Find the radius of curvature of the curve $x^{4}+y^{4}=2$ at the point $(1,1)$.

Or
Page 8 Code No. : 20571 B
(ஆ) $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ என்ற வளைவரையின் வளைவு ஆரம், $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ என்ற புள்ளியில் $3 a \sin \theta \cos \theta$ என நிரூபி.

Prove that the Radius of Curvature at a point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is $3 a \sin \theta \cos \theta$.
17. (அ) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ என்ற நீள்வட்டத்தின் $\mathrm{p}-\mathrm{r}$ சமன்பாட்டைக் காண்க.

Find the p-r equation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

$$
\begin{gathered}
\text { Or } \\
\text { (ஆ) } x^{3}-x y^{2}+6 y^{2}=0 \quad \text { என்ற } \quad \text { வளைவரையின் } \\
\text { தொலலத்தொடுகோடுகளளக் காண்க. }
\end{gathered}
$$

Find the asymptotes of the curve $x^{3}-x y^{2}+6 y^{2}=0$.
18. (அ) $y=(x-1)(x-2)(x-3)$ என்ற வளைவரையை வரைக.

Trace the curve $y=(x-1)(x-2)(x-3)$.
Or
(ஆ) $(x+y)^{3}=\sqrt{2}(y-x+2)^{2}$ என்ற வளைவரரயின் தனித்த புள்ளிகளின் இயல்பைக் காண்க.

Find the nature of the singular points of the curve $(x+y)^{3}=\sqrt{2}(y-x+2)^{2}$.
19. (அ) $x^{2}+y^{2}+z^{2}=a^{2}$ என்ற கோளத்தின் மிகை எண் பகுதி வழியாக $\iiint x y z d x d y d z$-ஐ மதிப்பிடுக.

Evaluate $\iiint x y z d x d y d z$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Or

(ஆ) தொகையீட்டின் வாிசையை மாற்றி மதிப்பு காண் $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.

By changing the order of integration, evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.

Page 10 Code No. : 20571 B
20. (அ) நிரூபி : $\beta(m, n)=\frac{\sqrt{(m)} \overline{(n)}}{\sqrt{(m+n)}}$.

Prove : $\beta(m, n)=\frac{\sqrt{(m)} \mid(n)}{\sqrt{(m+n)}}$.
Or
(ஆ) $2^{2 n-1} \sqrt{(n)} \sqrt{\left(n+\frac{1}{2}\right)}=\sqrt{(2 n)} \sqrt{\pi}$ என நிரூபி.
Prove that $2^{2 n-1} \sqrt{(n)} \sqrt{\left(n+\frac{1}{2}\right)}=\sqrt{(2 n)} \sqrt{\pi}$.

Page 11 Code No. : 20571 B

Reg. No. :

Code No. : 20572 B Sub. Code : SMMA 21

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core
ANALYTICAL GEOMETRY OF THREE DIMENSIONS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. x-அச்சில் திசைக் கொசசன்கள் \qquad _.
(அ) $(1,0,0) \quad$ (ஆ) $(0,0,0)$
(இ) $(0,1,0) \quad$ (ஈ) $(0,0,1)$
The direction cosines of the x-axis are \qquad .
(a) $(1,0,0)$
(b) $(0,0,0)$
(c) $(0,1,0)$
(d) $(0,0,1)$
2. l, m, n என்பவை ஒரு நேர்கோட்டின் திசைக் கொசைன்கள் எனில்
(அ) $l^{2}+m^{2}+n^{2}=1 \quad$ (ஆ) $\frac{l}{m}=\frac{m}{n}=\frac{n}{l}$
(இ) $\quad l m+m n+n l=1 \quad$ (ஈ) $\quad l+m+n=1$
If l, m, n are the direction cosines of a line, then
(a) $l^{2}+m^{2}+n^{2}=1$
(b) $\frac{l}{m}=\frac{m}{n}=\frac{n}{l}$
(c) $l m+m n+n l=1$
(d) $l+m+n=1$
3. தளத்தின் சமன்பாட்டின் படி \qquad .
(அ) 4
(ஆ) 3
(இ) 2
(ஈ) 1
Degree of a plane equation is \qquad .
(a) 4
(b) 3
(c) 2
(d) 1
4. $(a, 0,0),(0, b, 0),(0,0, c)$ ஆகிய புள்ளிகள் வழியாக செல்லும் தளத்தின் சமன்பாடு \qquad -.
$\begin{array}{ll}\text { (அ) } a x+b y+c z=0 & \text { (ஆ) } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\end{array}$
(இ) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$
(ஈ) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Page 2 Code No. : 20572 B

The equation of the plane through $(a, 0,0)$, $(0, b, 0)$ and $(0,0, c)$ is
(a) $a x+b y+c z=0$
(b) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
(c) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$
(d) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
5. y-அச்சின் சமன்பாடு \qquad .
(அ) $y=0 ; z=0 \quad$ (ஆ) $y=0$
(இ) $x=0 ; z=0$
(ஈ) $x=0 ; y=0$
The equation of the y-axis is
(a) $y=0 ; z=0$
(b) $y=0$
(c) $x=0 ; z=0$
(d) $x=0 ; y=0$
6. $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r \quad$ என்ற சமன்பாடு ___ ஐு குறிக்கும்
(அ) வட்டம் (ஆ) நேர்கோடு
(இ) நீள்வட்டம்
(ஈ) அதிபரவளையம்
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$ is the equation of the
\qquad
(a) circle
(b) straight line
(c) ellipse
(d) hyperbola

Page 3 Code No. : 20572 B
7. கோளத்தின் சமன்பாட்டில் $y z$-ன் கெழு
(அ) 0
(ஆ) 1
(இ) 2
(ஈ) 3

In the equation of the sphere, the coefficient of $y z$ is
(a) 0
(b) 1
(c) 2
(d) 3
8. $x^{2}+y^{2}+z^{2}=25$ என்ற கோளத்தின் விட்டம்
\qquad
(அ) 10 (ஆ) 25
(இ) 50
(ஈ) 5
The diameter of the sphere $x^{2}+y^{2}+z^{2}=25$ is
(a) 10
(b) 25
(c) 50
(d) 5
9. ஒவ்வொரு கோடும் கூம்பினை புள்ளிகளில் சந்திக்கும்.

(அ) 1	(ஆ) 2
(இ) 3	(ஈ) 4

Every line meets the cone in \qquad points.
(a) 1
(b) 2
(c) 3
(d) 4

Page 4 Code No. : 20572 B
10. ஒரு உருளையின் அச்சும் அதன் பிறப்பாக்கியும் ___ ஆக இருக்கும்.
(அ) செங்குத்து (ஆ) இணை
(இ) சமம்
(ஈ) வெவ்வேறு
The axis of the cylinder is \qquad to the generator of the cylinder.
(a) perpendicular
(b) parallel
(c) equal
(d) different

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ)
$(10,7,0),(6,6,-1)$ மற்றும் $(6,9,-4)$ ஆகிய புள்ளிகள் இரு பக்க சம நேர்கோண முக்கோணத்தை அமைக்கும் எனக் காட்டுக.

Show that the points $(10,7,0),(6,6,-1)$ and $(6,9,-4)$ from an isosceles right angled triangle.

Or
(ஆ) l_{1}, m_{1}, n_{1} மற்றும் l_{2}, m_{2}, n_{2} என்ற திசைக் கொசைன்களை உடைய இரு கோடுகளுக்கு இடைபட்ட கோணத்தை காண்க.

Find the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}.

Page 5 Code No. : 20572 B
12. (அ) $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ மற்றும் $\left(x_{3}, y_{3}, z_{3}\right)$ என்ற புள்ளிகள் வழியாக செல்லும் தளத்தின் சமன்பாட்டை தருவி.

Derive the equation of the plane passing through the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$.

Or
(ஆ) $(3,1,2)$ மற்றும் $(3,4,4)$ புள்ளிகள் வழியாகவும் $5 x+y+4 z=0$ என்ற தளத்திற்கு செங்குத்தாகவும் செல்லும் தளத்தின் சமன்பாடு காண்க.

Find the equation of the plane passing through the points $(3,1,2)$ and $(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$.
13. (அ) $\quad P(3,9,-1)$ என்ற புள்ளியிலிருந்து
$\frac{x+8}{-8}=\frac{y-31}{1}=\frac{z-13}{5}$ என்ற கோட்டின் செங்குத்து நீளம் காண்க.

Find the perpendicular distance from
$P(3,9,-1)$ to the line $\frac{x+8}{-8}=\frac{y-31}{1}=\frac{z-13}{5}$.

Or

Page 6 Code No. : 20572 B
(ஆ) $a x+b y+c z+d=0=a_{1} x+b_{1} y+c_{1} z+d_{1}$ மற்றும் $a_{2} x+b_{2} y+c_{2} z+d_{2}=0=a_{3} x+b_{3} y+c_{3} z+d_{3}$ ஆகிய இரு கோடுகள் ஒரு தளத்தில் அமைய வேண்டிய நிபந்தனையைக் காண்க.

Find the condition for the lines $a x+b y+c z+d=0=a_{1} x+b_{1} y+c_{1} z+d_{1}, \quad a_{2} x+$ $b_{2} y+c_{2} z+d_{2}=0=a_{3} x+b_{3} y+c_{3} z+d_{3}$ to be the coplanar.
14. (அ)
$(6,-1,2)$ என்ற புள்ளியை மையமாகவும் $2 x-y+2 z-2=0$ என்ற தளத்தை தொட்டுச் செல்லும் கோளத்தின் சமன்பாட்டைக் காண்க.

Find the equation of the sphere which has its centre at the point $(6,-1,2)$ and touches the plane $2 x-y+2 z-2=0$.

Or
(ஆ) $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0 \quad$ என்ற
கோளத்தை $2 x-y-2 z=16$ என்ற தளம் தொட்டு செல்லும் என காட்டுக.

Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$.
15. (அ) புள்ளி 0 , அச்சுக்கோடு $O Z$ மற்றும் அரை உச்சிக்கோணம் α-ஐ உடைய நேர்வட்ட கூம்பின் சமன்பாடு $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ எனக் காட்டுக.

Show that the equation of a right circular cone whose vertex is 0 , axis $O Z$ and semi vertical angle α is $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$.

Or

$$
\text { (ஆ) } \frac{x}{32}=\frac{y}{72}=\frac{z}{27} \text { என்ற கோட்டினை உள்ளடக்கிய }
$$

$$
9 x^{2}-4 y^{2}+16 z^{2}=0 \quad \text { என்ற கூம்பின் }
$$ தொடுகோடு தளத்தின் சமன்பாட்டினைக் காண்க.

Find the equation of the tangent planes to the cone $9 x^{2}-4 y^{2}+16 z^{2}=0$ which contain the line $\frac{x}{32}=\frac{y}{72}=\frac{z}{27}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) $l+m+n=0$; $2 l m+2 l m-m n=0$ என்ற இரு சமன்பாடிகளும் ஒரு கோட்டின் திறை கொசசன்களுக்கு உட்படுமமாயின் அவவகளுக்கிடையேயான கோணத்தை கண்டுபிடி.
If the direction cosines of the two lines satisfy the equations $l+m+n=0$; $2 l m+2 l m-m n=0$; then find the angle between the lines.

Or

Page 8 Code No. : 20572 B
(ஆ) ஒரு கனசதுரத்தின் நான்கு மூலைவிட்டங்களிலும் ஒரு கோடு $\alpha, \beta, \gamma, \delta$ என்ற கோணத்தை உருவாக்குகிறது எனில்
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$.
A line make angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube then prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$.
17. (அ) $(-1,3,2)$ என்ற புள்ளி வழியாக செல்லும், $x+2 y+2 z=5$ மற்றும் $3 x+3 y+2 z=8$ என்ற தளங்களுக்கு செங்குத்தானதுமான தளத்தின் சமன்பாட்டைக் காண்க.

Find the equation of the plane which passes through the point $(-1,3,2)$ and perpendicular to the two planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

Or
(ஆ) $2 x-y+4 z=7$ மற்றும் $x+2 y-3 z+8=0$ என்ற தளங்களை வெட்டுவதும் $(1,-2,3)$ என்ற புள்ளி வழியாக செல்லும் தளத்தின் சமன்பாட்டினைக் காண்க.

Find the equation of the plane through the point $(1,-2,3)$ and the intersection of the planes $2 x-y+4 z=7$ and $x+2 y-3 z+8=0$.

Page 9 Code No. : 20572 B
18. (அ) $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}$; $\quad \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ என்ற கோடுகள் ஒரே தளத்தில் அமையும் என நிறுவுக. மேலும் அவை வெட்டும் புள்ளியையும் அவை செல்லும் தளத்தின் சமன்பாட்டினையும் காண்க.

Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}$ and $\frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them.

Or

$$
\begin{array}{rlr}
\text { (ஆ) } \frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} & & \text { மற்றும் } \\
\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2} & \text { என்ற } & \text { கோடுகளுக்கு } \\
\text { இடைபட்ட தூரம் } & \text { மற்றும் } & \text { சமன்பாட்டை } \\
\text { கண்டுபிடி. }
\end{array}
$$

Find the shortest distance and equation of the shortest distance between the lines

$$
\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} \text { and } \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2} .
$$

19. (அ) மாறா ஆரம் k-ஐ கொண்ட கோளம் மையப்புள்ளி வழியாகச் செல்லும் மற்றும் அச்சுக் கோடுெளை A, B, C-ல் சந்திக்கும் எனில் முக்கோணம் $A B C$, $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$ என்ற கோளத்தின் மையப்பகுதியில் அமையும் என நிறுவுக.
A sphere of constant radius k passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

Or
(ஆ) $x^{2}+y^{2}+z^{2}-2 x-4 y=0, x+2 y+3 z=8$ என்ற வட்டத்தின் வழியாகவும் $4 x+3 y=25$ என்ற தளத்தை தொடும் கோளத்தின் சமன்பாட்டை காண்க.
Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0$, $x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.
20. (அ) $(a, 0,0),(0, a, 0),(0,0, a)$ ஆகிய புள்ளிகள் வழியாக செல்லும் வட்டம் உதவி வளைகோடாக கொண்ட செவ்வட்ட உருளையின் சமன்பாட்டைக் காண்க.
Find the equation of the right circular cylinder described on the circle through the points $(a, 0,0), \quad(0, a, 0),(0,0, a)$ as a guiding curve.

Or

Page 11 Code No. : 20572 B

$$
\begin{array}{lll}
\text { (ஆ) } l x+m y+n z=0 \quad \text { என்ற } & \text { தளம் } \\
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0 & \text { என்ற } \\
\text { நாற்காலி கूம்றப (quadric cone) } \\
\text { தொடுவதற்கான நிபந்தனையை கண்டுபிடி. } \\
\text { Find the condition for the plane } \\
l x+m y+n z=0 \text { to touch the quadric cone } \\
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0 .
\end{array}
$$

Code No. : 20572 E Sub. Code : SMMA 21

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core
ANALYTICAL GEOMETRY OF THREE DIMENSIONS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The direction cosines of the x-axis are \qquad .
(a) $(1,0,0)$
(b) $(0,0,0)$
(c) $(0,1,0)$
(d) $(0,0,1)$
2. If l, m, n are the direction cosines of a line, then
(a) $l^{2}+m^{2}+n^{2}=1$
(b) $\frac{l}{m}=\frac{m}{n}=\frac{n}{l}$
(c) $l m+m n+n l=1$
(d) $l+m+n=1$
3. Degree of a plane equation is \qquad .
(a) 4
(b) 3
(c) 2
(d) 1
4. The equation of the plane through $(a, 0,0)$, $(0, b, 0)$ and $(0,0, c)$ is
(a) $a x+b y+c z=0$
(b) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
(c) $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$
(d) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
5. The equation of the y-axis is
(a) $y=0 ; z=0$
(b) $y=0$
(c) $x=0 ; z=0$
(d) $x=0 ; y=0$
6. $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$ is the equation of the
\qquad .
(a) circle
(b) straight line
(c) ellipse
(d) hyperbola
7. In the equation of the sphere, the coefficient of $y z$ is
(a) 0
(b) 1
(c) 2
(d) 3

Page 2 Code No. : 20572 E
8. The diameter of the sphere $x^{2}+y^{2}+z^{2}=25$ is
(a) 10
(b) 25
(c) 50
(d) 5
9. Every line meets the cone in \qquad points.
(a) 1
(b) 2
(c) 3
(d) 4
10. The axis of the cylinder is \qquad to the generator of the cylinder.
(a) perpendicular
(b) parallel
(c) equal
(d) different

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Show that the points $(10,7,0),(6,6,-1)$ and $(6,9,-4)$ from an isosceles right angled triangle.

Or

(b) Find the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}.

Page 3 Code No. : 20572 E
12. (a) Derive the equation of the plane passing through the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$.

Or
(b) Find the equation of the plane passing through the points $(3,1,2)$ and $(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$.
13. (a) Find the perpendicular distance from $P(3,9,-1)$ to the line $\frac{x+8}{-8}=\frac{y-31}{1}=\frac{z-13}{5}$.

Or
(b) Find the condition for the lines $a x+b y+c z+d=0=a_{1} x+b_{1} y+c_{1} z+d_{1}, \quad a_{2} x+$ $b_{2} y+c_{2} z+d_{2}=0=a_{3} x+b_{3} y+c_{3} z+d_{3}$ to be the coplanar.
14. (a) Find the equation of the sphere which has its centre at the point $(6,-1,2)$ and touches the plane $2 x-y+2 z-2=0$.

Or

(b) Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$.
15. (a) Show that the equation of a right circular cone whose vertex is 0 , axis $O Z$ and semi vertical angle α is $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$.

Or
(b) Find the equation of the tangent planes to the cone $9 x^{2}-4 y^{2}+16 z^{2}=0$ which contain the line $\frac{x}{32}=\frac{y}{72}=\frac{z}{27}$.

$$
\text { PART C }-(5 \times 8=40 \mathrm{marks})
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) If the direction cosines of the two lines satisfy the equations $l+m+n=0$; $2 l m+2 \ln -m n=0$; then find the angle between the lines.

Or
(b) A line make angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube then prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$.

Page 5 Code No. : 20572 E
17. (a) Find the equation of the plane which passes through the point $(-1,3,2)$ and perpendicular to the two planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

Or
(b) Find the equation of the plane through the point $(1,-2,3)$ and the intersection of the planes $2 x-y+4 z=7$ and $x+2 y-3 z+8=0$.
18. (a) Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}$ and $\frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them.

Or
(b) Find the shortest distance and equation of the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$ and $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
19. (a) A sphere of constant radius k passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

Or
(b) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0$, $x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.

Page 6 Code No. : 20572 E
20. (a) Find the equation of the right circular cylinder described on the circle through the points $(a, 0,0), \quad(0, a, 0), \quad(0,0, a)$ as a guiding curve.

Or

(b) Find the condition for the plane $l x+m y+n z=0$ to touch the quadric cone $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$.

Reg. No. :

Code No. : 20573 B Sub. Code : SMMA 41

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics - Core
ABSTRACT ALGEBRA - I
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $\left(Z_{8}, \oplus\right)$ என்ற குலத்தில், உறுப்பு 3-ன் வரிசை
(அ) 2
(இ) 6
The order of the element 3 in $\left(Z_{8}, \oplus\right)$ is
\qquad -.
(a) 2
(b) 4
(c) 6
(d) 8
2. கீழ்வருவனவற்றில் எது குலம்?
(அ) $\left(Z_{6}, \odot\right)$
(ஆ) $\left(Z_{7}, \odot\right)$
(இ) $\left(Z_{11}-\{0\}, \odot\right)$
(ศ) $\quad\left(Z_{8}-\{0\}, \odot\right)$

Which one of the following is a group?
(a) $\left(Z_{6}, \odot\right)$
(b) $\left(Z_{7}, \odot\right)$
(c) $\quad\left(Z_{11}-\{0\}, \odot\right)$
(d) $\left(Z_{8}-\{0\}, \odot\right)$
3. $\left(Z_{12}, \oplus\right)$ என்ற குலத்தின் பிற்பாக்கிகளின் கணம்
\qquad .
(அ) $\{1,2,3,4\}$
(ஆ) $\{1,3,6,9\}$
(இ) $\{1,5,7,11\}$
(ஈ) $\{2,3,5,7\}$

The set of generators of the group $\left(Z_{12}, \oplus\right)$ is
\qquad .
(a) $\{1,2,3,4\}$
(b) $\{1,3,6,9\}$
(c) $\{1,5,7,11\}$
(d) $\{2,3,5,7\}$
4. குலம் $\left(Z_{18}, \oplus\right)$-ன் வட்ட உட்குலம் $\langle 2\rangle$-ல் உள்ள உறுப்புகளின் எண்ணிக்கை \qquad .
(அ) 1
(ஆ) 18
(இ) 9
(ஈ) 5

Number of elements in the cyclic subgroup $\langle 2\rangle$ of $\left(Z_{18}, \oplus\right)$ is
(a) 1
(b) 18
(c) 9
(d) 5
5. $\quad Z_{60} /\langle 5\rangle$ என்ற வகுத்தற்குலத்தின் உறுப்புகளின் எண்ணிக்கை \qquad
(அ) 3 (ஆ) 5
(இ) 15
(ஈ) 20
The number of elements in the quotient group $Z_{60} /\langle 5\rangle$ is
(a) 3
(b) 5
(c) 15
(d) 20
6. $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ என்பது ஒரு வாிசை மாற்றம் எனில் α^{-1} என்பது \qquad .
(அ) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$
(ஆ) $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
(இ) $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$
(ஈ) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$
Page 3 Code No. : 20573 B

If $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ is a permutation then α^{-1} is
\qquad
(a) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$
(b) $\quad\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
(c) $\quad\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$
(d) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$
7. பின்வருவனவற்றில் எது வளையம் அல்லாதது?
(அ) $(\mathbb{Z},+, \cdot)$
(ஆ) $(\mathbb{Q},+, \cdot)$
(இ) $\left(Z_{n}, \odot, \oplus\right)$
(ஈ) $\quad\left(Z_{n}, \oplus, \odot\right)$

Which one of the following is not a ring?
(a) $(\mathbb{Z},+, \cdot)$
(b) $(\mathbb{Q},+, \cdot)$
(c) $\quad\left(Z_{n}, \odot, \oplus\right)$
(d) $\quad\left(Z_{n}, \oplus, \odot\right)$
8. \mathbb{Z} என்ற வளையத்தில் (n) என்பது ஓரு மீப்பெரு கருத்தியல் \Leftrightarrow
(அ) n ஒரு பகா எண் (ஆ) n ஒரு பகு எண்
(இ) $n \neq 2$
(ซ) $n>13$

Page 4 Code No. : 20573 B

In the ring $\mathbb{Z},(n)$ is a maximal ideal \Leftrightarrow
\qquad .
(a) n is a prime number
(b) n is a composite number
(c) $n \neq 2$
(d) $n>13$
9. $\quad f: C \rightarrow \mathbb{C}$ என்ற சார்பு $f(z)=\bar{z}$ என வரையறுக்கப் படுகிறது எனில் f-ன் உட்கரு \qquad .
(அ) φ
(ஆ) $\{0\}$
(இ) $\{1\}$
(ஈ) $\quad\{i\}$

Let $f: \mathrm{C} \rightarrow \mathbb{C}$ be defined by $f(z)=\bar{z}$. Then kerf is
\qquad
(a) φ
(b) $\{0\}$
(c) $\{1\}$
(d) $\{i\}$
10. \mathbb{Q}-ன் ஈவுகளின் புலம் \qquad .
(அ) Q
(இ) \mathbb{Z}
(ஈ) ஏதுமில்லை

Page 5 Code No. : 20573 B

Field of quotients of is \mathbb{Q} is \qquad
(a) Q
(b) N
(c) \mathbb{Z}
(d) None

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) G என்பது இரட்டை எண்ணிக்கையுடைய

உறுப்புகளைக் கொண்ட ஒரு முடிவுறு குலம் எனில் குறறந்தபட்சம் வாிசை 2 உடைய ஒரு உறுப்பேனும் G-யில் இருக்கும் என நிறுவுக.

If G is a finite group with even number of elements then prove that G contains atleast one element of order 2 .

Or
(ஆ) H மற்றும் K என்பன G என்ற குலத்தின் உட்குலங்கள் எனில் $H \cap K$ என்பது G-யின் உட்குலம் என நிரூபி.

If H and K are subgroups of a group G then prove that $H \cap K$ is also a subgroup of G.

Page 6 Code No. : 20573 B
12. (அ) வட்ட குலத்தை வரையறு. ஒரு வட்டகுலத்தின் உட்குலமும் வட்டகுலம் என நிறுவுக.

Define a cyclic group. Prove that a subgroup of a cyclic group is cyclic.

Or
(ஆ) ஆய்லாின் தேற்றத்தை எழுதி நிறுவுக.
State and prove Euler's theorem.
13. (அ) எந்தவொரு முடிவுறா வட்டகுலமும் $(\mathbb{Z},+) எ ன ் ற ~$ குலத்துடன் சம ஒப்புமை உடையது என நிறுவுக.

Prove that any infinite cyclic group is isomorphic to $(\mathbb{Z},+)$.

Or

(ஆ) N என்பது G என்ற குலத்தின் நேர்மை உட்குலம் எனில் G / N ஒரு குலம் எனக் காட்டுக.

Let N be a normal subgroup of a group G. Show that G / N is a group.

Page 7 Code No. : 20573 B
14. (அ) R ஒரு வளையம், $a, b \in R$ எனில்
(i) $0 . a=a .0=0$
(ii) $a(-b)=(-a) b=-(a b)$
(iii) $(-a)(-b)=a b$
(iv) $a .(b-c)=a . b-a . c$ என நிறுவுக.

Let R be a ring and $a, b \in R$. Prove that
(i) $0 . a=a .0=0$
(ii) $\quad a(-b)=(-a) b=-(a b)$
(iii) $(-a)(-b)=a b$
(iv) $a .(b-c)=a . b-a . c$.

Or
(ஆ) R என்பது சமனி உறுப்புடைய ஒரு பாிமாற்று வளையம் என்க. ஒரு கருத்தியல் P பகா கருத்தியல் என்றால் மட்டுமே R / P ஒரு தொகுப்புக் களம் என நிரூபி.

Let R be a commutative ring with identity and P be an ideal of R. Prove that P is a prime ideal iff R / P is an integral domain.

Page 8 Code No. : 20573 B
15. (அ) R மற்றும் R^{\prime} என்பன வளையம் என்க. $f: R \rightarrow R^{\prime} \quad$ என்பது புனல்சார்பு என்க. $\operatorname{ker} f=\{0\}$ என்றால் மட்டுமே f ஒரு ஒன்றுக்கு ஒன்றான சார்பு என நிறுவுக.

Let R and R^{\prime} be rings and $f: R \rightarrow R^{\prime}$ be a homomorphism. Prove that $\operatorname{ker} f=\{0\}$ iff f is one-one

Or
(ஆ) $R[x]$ ஒரு தொகுப்பு களம் என்றால் மட்டுமே R ஓரு தொகுப்பு களம் ஆகும் என நிரூபி.

Prove that $R[x]$ is an integral domain $\Leftrightarrow R$ is an integral domain.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) G என்ற குலத்தின் உறுப்புகள் ' a ' and ‘ b ' எனில் கீழ்கண்டவற்றை நிறுவுக.
(i) a-ன் வரிசை $=a^{-1}$-ன் வரிசை
(ii) a-ன் வரிசை $=b^{-1} a b$-ன் வரிசை
(iii) $a b$-ன் வரிசை $=b a$-ன் வரிசை

Page 9 Code No. : 20573 B

If ' a ' and ' b ' are elements of a group G then prove the following :
(i) Order of $a=$ Order of a^{-1}
(ii) Order of $a=$ Order of $b^{-1} a b$
(iii) Order of $a b=$ Order of $b a$

Or
(ஆ) G என்ற குலத்தின் இரு உட்குலங்களின் சே்்ப்புகணம் ஒரு உட்குலம் என்றால் மட்டுமே ஒன்று மற்றொன்றின் உள் இருக்கும் என காட்டுக.

Show that the union of two subgroups of a group G is a subgroup iff one is contained in the other.
17. (அ) ஒரு குலத்தின் இட இணைகணங்களின் தொகுப்பு அக்குலத்தின் பிரிவினை ஆகும் என நிறுவுக.
Prove that the collection of all left cosets forms a partition of the group.

Or
(ஆ) H மற்றும் K என்பன குலம் G-ன் வரரயறுக்கப்பட்ட குறியீட்டு உட்குலங்கள் எனில் $H \cap K$ என்பது G-ன் வரையறுக்கப்பட்ட குறியீட்டு உட்குலம் என நிரூபி.
Let H and K be two subgroups of G of finite index in G. Prove that $H \cap K$ is a subgroup of finite index in G.
18. (அ) கொடுக்கப்பட்ட வரிசையில் குலம் G-க்கு ஒரே ஒரு உட்குலம் H எனில் அந்த உட்குலம் H ஒரு நேர்மை உட்குலம் என காட்டுக.

If a group G has exactly one subgroup H of given order then show that H is a normal subgroup of G.

Or
(ஆ) கெய்லியின் தேற்றத்தை எழுதி நிறுவுக.
State and prove Cayley's theorem.
19. (அ) R என்பது சமனி உடைய ஒரு பாிமாற்று வளையம் என்க. R-ன் கருத்தியல் M ஒரு மிகுவரை கருத்தியல் என்றால் மட்டுமே R / M ஒரு களம் என நிரூபி.

Let R be a commutative ring with identity. Prove that an ideal M of R is maximal iff R / M is a field.

Or
(ஆ) கீழ்க்கண்டவற்றை நிறுவுக.
(i) Z_{n} என்பது ஓரு புலம் $\Leftrightarrow n$ ஒரு பகா எண்.
(ii) ஓரு தொகுப்புகளின் சிறப்பியல்பு 0 அல்லது ஒரு பகா எண்.

Page 11 Code No. : 20573 B

Prove the following :
(i) $\quad Z_{n}$ is a field $\Leftrightarrow n$ is prime.
(ii) The characteristic of an integral domain is either 0 or a prime number.
20. (அ) வளையங்களுக்கிடையேயான புனல் சார்பின் அடிப்படைத் தேற்றத்தைக் கூறி நிறுவுக.

State and prove the fundamental theorem of homomorphism for rings.

Or
(ஆ) எந்தவொரு தொகுப்பு களத்தையும் ஒரு புலத்தில் பதிக்க முடியும் என நிரூபி.

Prove that every integral domain can be embedded in a field.

Page 12 Code No. : 20573 B

Code No. : 20573 E Sub. Code : SMMA 41

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics - Core

ABSTRACT ALGEBRA - I

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The order of the element 3 in $\left(Z_{8}, \oplus\right)$ is
\qquad .
(a) 2
(b) 4
(c) 6
(d) 8
2. Which one of the following is a group?
(a) $\left(Z_{6}, \odot\right)$
(b) $\left(Z_{7}, \odot\right)$
(c) $\quad\left(Z_{11}-\{0\}, \odot\right)$
(d) $\left(Z_{8}-\{0\}, \odot\right)$
3. The set of generators of the group $\left(Z_{12}, \oplus\right)$ is
\qquad .
(a) $\{1,2,3,4\}$
(b) $\{1,3,6,9\}$
(c) $\{1,5,7,11\}$
(d) $\{2,3,5,7\}$
4. Number of elements in the cyclic subgroup $\langle 2\rangle$ of $\left(Z_{18}, \oplus\right)$ is
(a) 1
(b) 18
(c) 9
(d) 5
5. The number of elements in the quotient group $Z_{60} /\langle 5\rangle$ is
(a) 3
(b) 5
(c) 15
(d) 20
6. If $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ is a permutation then α^{-1} is
\qquad
(a) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$
(b) $\quad\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$
(d) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$

Page 2 Code No. : 20573 E
7. Which one of the following is not a ring?
(a) $(\mathbb{Z},+, \cdot)$
(b) $\quad(\mathbb{Q},+, \cdot)$
(c) $\quad\left(Z_{n}, \odot, \oplus\right)$
(d) $\quad\left(Z_{n}, \oplus, \odot\right)$
8. In the ring $\mathbb{Z},(n)$ is a maximal ideal \Leftrightarrow
\qquad .
(a) n is a prime number
(b) n is a composite number
(c) $n \neq 2$
(d) $n>13$
9. Let $f: \mathrm{C} \rightarrow \mathbb{C}$ be defined by $f(z)=\bar{z}$. Then kerf is
\qquad
(a) φ
(b) $\{0\}$
(c) $\{1\}$
(d) $\{i\}$
10. Field of quotients of is \mathbb{Q} is \qquad
(a) Q
(b) N
(c) \mathbb{Z}
(d) None

Page 3 Code No. : 20573 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If G is a finite group with even number of elements then prove that G contains atleast one element of order 2 .

Or
(b) If H and K are subgroups of a group G then prove that $H \cap K$ is also a subgroup of G.
12. (a) Define a cyclic group. Prove that a subgroup of a cyclic group is cyclic.

Or
(b) State and prove Euler's theorem.
13. (a) Prove that any infinite cyclic group is isomorphic to $(\mathbb{Z},+)$.

Or
(b) Let N be a normal subgroup of a group G. Show that G / N is a group.

Page 4 Code No. : 20573 E
[P.T.O.]
14. (a) Let R be a ring and $a, b \in R$. Prove that
(i) $0 . a=a .0=0$
(ii) $\quad a(-b)=(-a) b=-(a b)$
(iii) $(-a)(-b)=a b$
(iv) $a .(b-c)=a . b-a . c$.

Or
(b) Let R be a commutative ring with identity and P be an ideal of R. Prove that P is a prime ideal iff R / P is an integral domain.
15. (a) Let R and R^{\prime} be rings and $f: R \rightarrow R^{\prime}$ be a homomorphism. Prove that $\operatorname{ker} f=\{0\}$ iff f is one-one.

Or
(b) Prove that $R[x]$ is an integral domain $\Leftrightarrow R$ is an integral domain.

Page 5 Code No. : 20573 E

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If ' a ' and ' b ' are elements of a group G then prove the following :
(i) Order of $a=$ Order of a^{+}
(ii) Order of $a=$ Order of $b^{-1} a b$
(iii) Order of $a b=$ Order of $b a$

Or
(b) Show that the union of two subgroups of a group G is a subgroup iff one is contained in the other.
17. (a) Prove that the collection of all left cosets forms a partition of the group.

Or
(b) Let H and K be two subgroups of G of finite index in G. Prove that $H \cap K$ is a subgroup of finite index in G.
18. (a) If a group G has exactly one subgroup H of given order then show that H is a normal subgroup of G.

Or
(b) State and prove Cayley's theorem.

Page 6 Code No. : 20573 E
19. (a) Let R be a commutative ring with identity. Prove that an ideal M of R is maximal iff R / M is a field.

Or
(b) Prove the following :
(i) $\quad Z_{n}$ is a field $\Leftrightarrow n$ is prime.
(ii) The characteristic of an integral domain is either 0 or a prime number.
20. (a) State and prove the fundamental theorem of homomorphism for rings.

Or
(b) Prove that every integral domain can be embedded in a field.

Page 7 Code No. : 20573 E

Reg. No. :

Code No. : 20574 B Sub. Code : SMMA 51

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fifth Semester
Mathematics - Core
ABSTRACT ALGEBRA - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { SECTION A - }(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. $\quad T: V_{2}(R) \rightarrow V_{3}(R) \quad$ நோியல் உருமாற்றத்தில் $T(x, y, z)=(x, y, 0) \quad$ என வரையறுக்கப்பட்டது என்றால், $\operatorname{Ker} T=$ \qquad _.
(அ) $\{(0,0, z) / z \in R\}$
(ஆ) $\{(0, y, 0) / y \in R\}$
(இ) $\{(x, 0, z / x, z \in R)\}$
(ஈ) $\{(x, y, z) / x, y, z \in R\}$

In Linear Transform of $T: V_{2}(R) \rightarrow V_{3}(R)$ is defined as finite $T(x, y, z)=(x, y, 0), \quad \operatorname{Ker} T=$
\qquad .
(a) $\{(0,0, z) / z \in R\}$
(b) $\{(0, y, 0) / y \in R\}$
(c) $\quad\{(x, 0, z / x, z \in R)\}$
(d) $\{(x, y, z) / x, y, z \in R\}$
2. ஒரு திகையன் வெளி V இன் உள் வெளிகளான A மற்றும் Bயை உள்ளடக்கிய மீச்சிறு உள்வெளியானது
(அ) $A \cup B$
(ஆ) $A \cap B$
(இ) $A \Delta B$
(ஈ) $A+B$

The smallest subspace of a vector space V, which contains the subspaces A and B is \qquad .
(a) $A \cup B$
(b) $A \cap B$
(c) $A \Delta B$
(d) $A+B$
3. $V_{2}(R)$-ல், $S=\{(4,0)\}$ என்க. எனில் $L(S)=$
\qquad -.
(அ) S
(ஆ) $\{(x, 0) / x \in R\}$
(இ) $\{(0, y) / y \in R\}$
(ஈ) $\quad V_{2}(R)$

Page 2 Code No. : 20574 B

In $V_{2}(R)$, let $S=\{(4,0)\}$. Then $L(S)=$ \qquad
(a) S
(b) $\{(x, 0) / x \in R\}$
(c) $\{(0, y) / y \in R\}$
(d) $\quad V_{2}(R)$
4. $L(L(S))=$ \qquad .
(அ) $S \quad$ (ஆ) $L(S)$
(இ) V
(ஈ) $\quad L^{2}(S)$
$L(L(S))=$ \qquad .
(a) S
(b) $L(S)$
(c) V
(d) $\quad L^{2}(S)$
5. $\quad \operatorname{rank} T=\operatorname{dim} V$ எனில், Nullity $T=$ \qquad .
(அ) 0
(ஆ) $\operatorname{dim} V$
(இ) 1
(ஈ) ∞

If $\operatorname{rank} T=\operatorname{dim} V$, then Nullity $T=$ \qquad .
(a) 0
(b) $\operatorname{dim} V$
(c) 1
(d) ∞
6. $\quad V_{3}(R)$ ல் தரமான உள்ளீட்டு பெருக்கலில் $(1,2,3)$ என்ற திசையன் நீளம் \qquad -
(அ) 6
(ஆ) 14
(இ) $\sqrt{14}$
(ஈ) 1

Page 3 Code No. : 20574 B

The norm of the vector $(1,2,3)$ In $V_{3}(R)$ with standard inner product is \qquad ـ.
(a) 6
(b) 14
(c) $\sqrt{14}$
(d) 1
7. $\quad\left(\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 4 & 4\end{array}\right)$ என்ற அணியின் தரம்
(அ) 1 (ஆ) 2
(இ) 3
(ஈ) 4
The rank of the matrix $\left(\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 4 & 4\end{array}\right)$ is
\qquad .
(a) 1
(b) 2
(c) 3
(d) 4
8. தலைகீழ் அணி காண இயலாத அணி எது?
(அ) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(ஆ) $\left(\begin{array}{cc}\sqrt{3} / 2 & \sqrt{3} / 2 \\ 1 & 1\end{array}\right)$
(இ) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(円) $\quad\left(\begin{array}{ll}1 / \sqrt{2} & \sqrt{3} / 2 \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$

Page 4 Code No. : 20574 B

The inverse matrix does note exist for \qquad .
(a) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}\sqrt{3} / 2 & \sqrt{3} / 2 \\ 1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(d) $\quad\left(\begin{array}{cc}1 / \sqrt{2} & \sqrt{3} / 2 \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$
9. A ன் ஐகன் மதிப்புகள் $-1,2,5$ எனில் $(3 A)^{-1}$ அணியின் ஐகன் மதிப்புகள் \qquad .
(அ) $1, \frac{1}{4}, \frac{1}{25}$
(ஆ) $-3,6,15$
(இ) $-\frac{1}{3}, \frac{1}{6}, \frac{1}{15}$
(ஈ) $1,4,25$
If the eigen values of A are $-1,2,5$, then the eigen values of $(3 A)^{-1}$, then \qquad .
(a) $1, \frac{1}{4}, \frac{1}{25}$
(b) $-3,6,15$
(c) $-\frac{1}{3}, \frac{1}{6}, \frac{1}{15}$
(d) $1,4,25$
10. இருபடி வடிவம் $2 x^{2}-4 x y+3 y^{2}$ என்பதன் அணி வடிவம் \qquad .
(அ) $\left(\begin{array}{cc}2 & 2 \\ -2 & 3\end{array}\right)$
(ஆ) $\left(\begin{array}{cc}2 & -2 \\ -2 & 3\end{array}\right)$
(இ) $\left(\begin{array}{cc}1 & -2 \\ -2 & 3 / 2\end{array}\right)$
(ศ) $\quad\left(\begin{array}{cc}2 & -4 \\ -4 & 3\end{array}\right)$
Page 5 Code No. : 20574 B

The matrix of the quadratic form $2 x^{2}-4 x y+3 y^{2}$ is
\qquad
(a) $\left(\begin{array}{cc}2 & 2 \\ -2 & 3\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}2 & -2 \\ -2 & 3\end{array}\right)$
(c) $\quad\left(\begin{array}{cc}1 & -2 \\ -2 & 3 / 2\end{array}\right)$
(d) $\left(\begin{array}{cc}2 & -4 \\ -4 & 3\end{array}\right)$

SECTION B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) F என்ற புலத்தின் மீது V ஒரு திசசயன் வெளி என்க. ஒரு வெற்றற்ற உட்கணம் W, அனைத்து $u, v \in W, \quad \alpha, \beta \in F \Rightarrow \alpha u+\beta v \in W \quad$ என இருந்தால் மட்டுமே V-யின் உள்வெளி ஆகும் எனக் காட்டு.

Let V be a vector space over a field F. Show that a nonempty subset W of V is a subspace of V if and only if $u, v \in W$ and $\alpha, \beta \in F \Rightarrow$ $\alpha u+\beta v \in W$.

Or
(ஆ) F புலத்தின் மீது V மற்றும் W திசையன் வெளிகள் எனில் $L(V, W)$ என்பது V இ் இருந்து $W \dot{\text { க்கு }}$ அமையும் நோியல் உருமாற்றங்கள் அனைத்தும் கொண்ட கணம் எனில், $L(V, W)$ என்பது F ன் மீது அமையும் திசசயன் வெளி என நிரூபி.

Page 6 Code No. : 20574 B

Let V and W be vector spaces over a field F. Let $L(V, W)$ be the set-off all linear transformations from V to W. Then prove that $L(V, W)$ is a vector space over F.
12. (அ) நோியல் சார்புடைய கணத்தை உள்ளடக்கிய எந்தவொரு கணமும் நோியல் சார்புடையது எனக் காட்டு.

Prove that any set containing a linear dependent set is also linear dependent.

Or
(ஆ) ஒரே பரிமாணமுடைய இரு திசையன் வெளிகள் ஓாின சார்புடையவை என நிறுவுக. இதில் இரு திசையன் வெளிகளின் புலமும் F எனக் கொள்க.

Prove that any two vector spaces of the same dimension over a field F are isomorphic.
13. (அ) கிராம்-ஸ்மித் முறையைப் பயன்படுத்தி தரமான உள்பெருக்கல் உடைய $V_{3}(R)$ ன் அடிக்கணம் $\left\{v_{1}, v_{2}, v_{3}\right\}$. இதில் $v_{1}=(1,0,1), v_{2}=(1,3,1)$, $v_{3}=(3,2,1)$ என்பதற்கு அலகு நெறிம செங்குத்து அடிக்கணம் கட்டுக.

Apply Gram-Schmidt process to construct an orthonormal basis for $V_{3}(R)$ with the standard inner product for the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ where $v_{1}=(1,0,1), \quad v_{2}=(1,3,1)$, $v_{3}=(3,2,1)$.

Or

Page 7 Code No. : 20574 B
(ஆ) ஒரு வரையறுக்கப்பட்ட பரிமாணமுடைய உள்பெருக்கல் வெளி V என்க. W அதன் உள்வெளி எனில் $V=W \oplus W^{\perp}$ என நிறுவுக.

Let V be a finite dimensional inner product space W be its subspace. Then prove that $V=W \oplus W^{\perp}$.
14. (அ) அணியின் தலைகீழ் காண் அடிப்படை உருமாற்ற முறைப்படி $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3\end{array}\right)$.

Find the inverse of the matrix $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3\end{array}\right) \quad$ using elementary transformations.

Or
(ஆ) கெய்லி ஹேமில்டன் தேற்றம் சாி பார் $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$.

Verify Cayley Hamilton's theorem for the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$.

Page 8 Code No. : 20574 B
15. (அ) $A=\left(\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right)$ என்ற அணியின் இரு ஐகன் மதிப்புகளைப் பெருக்கினால் -12 எனில் A-ன் ஐகன் மதிப்புகள் காண்.

The product of two eigen values of the matrix
$A=\left(\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right)$ is -12 . Find the eigen values of A.

Or
(ஆ) ஒரு மெய் சமசீசீர் அணியின் சிறப்பியல்பு தீர்வுகள் அனைத்தும் மெய் என நிறுவுக.

Show that the characteristic roots of a real symmetric matrix are real.

SECTION C - (5 $\times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) F என்ற புலத்தின் மீது V என்பது திசையன் வெளி என்க. W என்பது V ன் உள்வெளி எனில் நிறுவுக. V / W என்பது F மீது உள்ள ஒரு திசசயன் வெளி.

Let V be a vector space over F and W be a subspace of V. Then prove that V / W is a vector space over F.

Or
Page 9 Code No. : 20574 B
(ஆ) நோியல் உருமாற்றத்திற்கான அடிப்படைத் தேற்றம் கூறி நிறுவுக.

State and prove fundamental theorem of homomorphism.
17. (அ) F என்ற புலத்தின் மீது V ஒரு வெக்டர் வெளி. $S=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ என்ற கணம் V யின் நேரியல் நீட்டம் என்க. $S_{1}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ ஒரு நேரியல் சார்பில்லா திசையன்களின் கணம் என்றால் $m \leq n$ எனக் காட்டு.

Let V be a vector space over a field F. Let $S=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\} \quad$ span $\quad V$. Let $S_{1}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\} \quad$ be a linearly independent set of vectors in V. Then show that $m \leq n$.

Or
(ஆ) V என்பது வரையறுக்கப்பட்ட பாிமாணமுடைய திசையன் வெளி என்க. A, B என்பவை V-யின் உள்வெளிகள் எனில், நிறுவுக $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$.

Let V be a finite dimensional vector space over a field F. Let A, B be subspaces of V Then show that $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$.
18. (அ) ஒவ்வொரு வரையறுக்கப்பட்ட உள்பெருக்கல் வெளியும் ஓரலகு நெறிம செங்குத்து அடிக்கணம் கொண்டது என நிரூபி.

Prove that every finite dimensional inner product space has an orthonormal basis.

Or
(ஆ) வரையறுத்த பரிமாணமுடைய உள்பெருக்கல் வெளியின் உள்வெளிகள் W_{1} மற்றும் W_{2} எனில், நிறுவுக $\quad\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$. மேலும் $W_{1}^{\perp} \cap W_{2}^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$.

If W_{1} and W_{2} are subspaces of a finite dimensional inner product space, show that $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$ and $W_{1}^{\perp} \cap W_{2}^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$.
19. (அ) அணியின் தரம் காண். $A=\left(\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 7\end{array}\right)$.

Find the rank of the matrix

$$
A=\left(\begin{array}{llll}
4 & 2 & 1 & 3 \\
6 & 3 & 4 & 7 \\
2 & 1 & 0 & 7
\end{array}\right)
$$

Or

Page 11 Code No. : 20574 B
(ஆ) கெய்லி-ஹேமில்டன் பேற்றம் படி
$A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right)$ அணிக்கு A^{-1}, A^{4} காண்.
Using Cayley Hamilton's theorem for the
matrix $A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right)$. Find A^{-1}, A^{4}.
20. (அ) ஐகன் மதிப்பு மற்றும் ஐகன் திசையன்கள் காண் $A=\left(\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right)$.

Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right)$.

Or
(ஆ) இருபடி வடிவம் மூலைலிட்ட வடிவமாக குறுகுவதை லெக்ரான்ஜி முறைப்படி விளக்குக.
Explain the Lagrange's method of reducing quadratic form to a diagonal form.

Page 12 Code No. : 20574 B

Reg. No. :

Code No. : 20575 B Sub. Code : SMMA 52

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fifth Semester
Mathematics - Main
REAL ANALYSIS - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. வழக்கின் மெட்ாிக்கில் $[-3,5]$ இன் விட்டம்
\qquad
(அ) 2
(ஆ) 0
(இ) 8
(ஈ) 5
With usual metric, the diameter of $[-3,5]$ is
\qquad
(a) 2
(b) 0
(c) 8
(d) 5
2. வழக்கமான மெட்ாிக்கில், R-இல் திறந்த பந்து $B(-1,1)$

என்பது \qquad _.
(அ) $[-2,0]$
(ஆ) $(-1,1)$
(இ) $[-1,1]$
(ศ) $(-2,0)$

In R, with usual metric, the open ball $B(-1,1)$ is
\qquad
(a) $[-2,0]$
(b) $(-1,1)$
(c) $[-1,1]$
(d) $(-2,0)$
3. வழக்கமான மெட்ரிக்கில் R-இல் உள்ள ஒவ்வொரு ஓர் உறுப்பு கணமும் \qquad -
(அ) மூடியது
(ஆ) திறந்தது
(இ) மூடியது மற்றும் திறந்தது
(ஈ) மூடியதுமல்ல, திறந்ததுமல்ல
In R with usual metric, every singleton set is
\qquad .
(a) closed
(b) open
(c) both open and closed
(d) neither open nor closed

Page 2 Code No. : 20575 B
4. $\quad A=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$ எனில் A-இன் திறட்சிபுள்ளி ——— ஆகும்.
(அ) 0
(ஆ) 1
(இ) $\frac{1}{n}$
(ஈ) ∞

If $A=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$, then the accumulation point of A is \qquad .
(a) 0
(b) 1
(c) $\frac{1}{n}$
(d) ∞
5. $f(x)=x^{2}$ என வரையறுக்கப்படும் சார்பு $f: R \rightarrow R$ ஆனது R-இன் மீது \qquad -
(அ) தொடர்ச்சியானது ஆனால் சீரான தொடர்ச்சியற்றது
(ஆ) சீரான தொடர்ச்சியானது
(இ) தொடர்ச்சியற்றது
(ஈ) தொடர்ச்சியானதுமல்ல, சீரான தொடர்ச்சியானதுமல்ல

Page 3 Code No. : 20575 B
$f: R \rightarrow R$ defined by $f(x)=x^{2}$ is \qquad on
R.
(a) continuous but not uniformly continuous
(b) uniformly continuous
(c) not continuous
(d) neither continuous nor uniformly continuous
6. சார்பு $f: R \rightarrow R$ ஆனது $f(x)=[x]$ என வரையறுக்கப்படின், அலலவு $w(f, 5)=$ \qquad .
(அ) 0
(ஆ) 1
(இ) 2
(ஈ) 5
If $f: R \rightarrow R$ is defined by $f(x)=[x]$, then oscillation $w(f, 5)=$ \qquad .
(a) 0
(b) 1
(c) 2
(d) 5
7. $R-\{0\}$ ஆனது \qquad .
(அ) தொடுத்தது
(ஆ) தொடித்தல்ல
(இ) கச்சிதமானது
(ஈ) தொடுத்தது ஆனால் கச்சிதமானதல்ல
$R-\{0\}$ is \qquad .
(a) Connected
(b) Not connected
(c) Compact
(d) Connected but not compact
8. R-இன் உட்கணம் ___ ஆனது கச்சிதமானது மற்றும் தொடுத்ததும் ஆகும்.
(அ) R
(ஆ) $(0,1)$
(இ) $[0,100]$
(ஈ) Q
The subset of \qquad R is both compact and connected.
(a) R
(b) $(0,1)$
(c) $[0,100]$
(d) Q
9. சார்பு f ஆனது c என்ற புள்ளியில் வகையிடத்தக்கது எனில் $\left(\frac{1}{f}\right)^{\prime}(c)=$ \qquad —.
(அ) $\frac{c}{[f(c)]^{2}}$
(ஆ) $\frac{f^{\prime}(c)}{[f(c)]^{2}}$
(இ) $\frac{-f^{\prime}(c)}{[f(c)]^{2}}$
(ஈ) $\frac{f^{\prime}(c)}{[f(c)]}$
Page 5 Code No. : 20575 B

If f is differential at a point c, then $\left(\frac{1}{f}\right)^{\prime}(c)=$
\qquad
(a) $\frac{c}{[f(c)]^{2}}$
(b) $\frac{f^{\prime}(c)}{[f(c)]^{2}}$
(c) $\frac{-f^{\prime}(c)}{[f(c)]^{2}}$
(d) $\frac{f^{\prime}(c)}{[f(c)]}$
10. $f(x)=\left(1-x^{2}\right), \quad x \in[-1,1]$ எனில், ரோலின் தேற்றத்தின்படி c யின் மதிப்பு \qquad .
(அ) 2
(ஆ) 0
(இ) -1
(ஈ) 1
If $f(x)=\left(1-x^{2}\right), \quad x \in[-1,1], \quad$ then by Rolle's theorem the value of c is \qquad .
(a) 2
(b) 0
(c) -1
(d) 1

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) d_{1} மற்றும் d_{2} என்பன M-மீதான இரு மெட்ரிக்குகள், $\quad d(x, y)=d_{1}(x, y)+d_{2}(x, y)$ எனில், M-இன் மீது d ஒரு மெட்ாிக் என நிறுவுக.
If d_{1} and d_{2} are two metrics on M and if $d(x, y)=d_{1}(x, y)+d_{2}(x, y)$, then prove that d is a metric on M.

Or
Page 6 Code No. : 20575 B
(ஆ) எந்தவொரு மெட்ாிக் வெளி (M, d) யிலும் ஒவ்வொரு திறந்த பந்தும் ஒரு திறந்த கணம் என நிரூபி.

Prove that in any metric space (M, d), each open ball is an open set.
12. (அ) எந்தவொரு மெட்ாிக் வெளியிலும், முடிவில்லா தொகுப்பில் உள்ள மூடிய கணங்களின் வெட்டும் ஒரு மூடிய கணம் என நிறுவுக.
Prove that in any metric space arbitrary intersection of closed sets is closed.

Or
(ஆ) R உல் உள்ள எந்தவொரு வெற்றற்ற திறந்த இடைவெளி (a, b) ஆனது இரண்டாம் வகை என நிரூபி.

Prove that any non empty open interval (a, b) in R is of second category.
13. (அ) (M, d) ஒரு மெட்ாிக் வெளி, $a \in M$ எனில் $f(x)=d(x, a)$ என வரையறுக்கப்படும் சார்பு $f: M \rightarrow R$ ஆனது தொடர்ச்சியானது என நிரூபி.

If (M, d) is a metric space and if $a \in M$, then show that the function $f: M \rightarrow R$ defined by $f(x)=d(x, a)$ is continuous.

Or

Page 7 Code No. : 20575 B
(ஆ) $f(x)=\sin x$ என வரரயறுக்கப்படும் சார்பு
$f: R \rightarrow R \quad$ ஆனது $\quad R \quad$ இன் மீது சீரான தொடர்ச்சியுடையது என நிறுவுக.

Prove that the function $f: R \rightarrow R$ defined by $f(x)=\sin x$ is uniformly continuous on R.
14. (அ) மெய் மதிப்புடைய தொடர்ச்சியான சார்பிற்கான இடைமதிப்பு தேற்றத்தை கூறி நிறுவுக.
State and prove intermediate value theorem for real continuous function.

Or
(ஆ) ஒரு மெட்ாிக் வெளி M இன் கச்சிதமான உட்கணம் A ஆனது எல்லைக்கு உட்பட்டது என நிரூபி.
Show that any compact subset A of a metric space M is bounded.
15. (அ) f-ஆனது c என்ற புள்ளியில் வகையிடத்தக்கது எனில், c-இல் f ஆனது தொடர்ச்சியானது என நிரூபி.
If f is differentiable at c, then show that f is continuous at c.

Or
(ஆ) ரோலின் தேற்றத்தைக் கூறி நிறுவுக.
State and prove Rolle's Theorem.
Page 8 Code No. : 20575 B

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ)
R-உள்ள எந்தவொரு திறந்த உட்கணத்தையும் ஒன்றுக்கொன்று பொதுவற்ற எண்ணிடத்தக்க திறந்த இடைவெளிகளின் சோ்க்கையாக வெளிப்படுத்த முடியும் என நிரூபி.

Prove that any open subset of R can be expressed as the union of a countable number of mutually disjoint open intervals.

Or
(ஆ) $(M, \quad d)$ ஒரு மெட்ாிக்வெளி மற்றும் $\rho(x, y)=2 d(x, y)$ எனில் d மற்றும் ρ ஆகியன இணையான மெட்ாிக்குகள் என நிரூபி.

If (M, d) is a metric space and if $\rho(x, y)=2 d(x, y)$, then prove that d and ρ are equivalent metrics on M.
17. (அ) வழக்கமான மெட்ரிக்கில், \mathbf{C} முழுமையானது என நிரூப.

Prove that \boldsymbol{C} with usual metric is complete.
Or

Page 9 Code No. : 20575 B
(ஆ) கேண்டாின் வெட்டும் தேற்றத்தை கூறி நிறுவுக.
State and prove Cantor intersection theorem.
18.
(அ) $\left(M_{1}, d_{1}\right)$ மற்றும் $\left(M_{2}, d_{2}\right)$ ஆகியன இரு மெட்ரிக் வெளிகள் எனில் $f: M_{1} \rightarrow M_{2}$ தொடர்ச்சியானதாக இருக்க தேவையான மற்றும் போதுமான நிபந்தனை அனைத்து $A \subseteq M_{1}$ க்கும் $f(\bar{A}) \subseteq \overline{f(A)}$ எனக் காட்டுக.

If $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ are two metric spaces, then prove that $f: M_{1} \rightarrow M_{2}$ is continuous iff $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \subseteq M_{1}$.

Or

(ஆ) $f:[a, b] \rightarrow R$ என்பது ஒரு போக்கு சார்பு எனில், $[a, b]$-இல் f-இன் தொடர்ச்சியற்ற புள்ளிகளின் கணம் எண்ணிடத்தக்கது என நிரூபி.

If $f:[a, b] \rightarrow R$ is monotonic function, then prove that the set of points of $[a, b]$ at which f is discontinuous is countable.
19. (அ) M என்பது தொடுத்தாக இருக்க தேவையான மற்றும் போதுமான நிபந்தனை ஒவ்வொரு தொடர்ச்சியான சார்பு $f: M \rightarrow\{0,1\}$-ம் மேல் கோர்த்தல் அல்ல என நிரூபி.

Prove that M is connected iff every continuous function $f: M \rightarrow\{0,1\}$ is not onto.

Or
(ஆ) ஹெய்னி போரல் தேற்றத்தைக் கூறி நிறுவுக.
State and prove Heine-Borel Theorem.
20. (அ) வகையிடலுக்கான சங்கிலி விதி தேற்றத்தைக் கூறி நிறுவுக.

State and prove the chain rule for derivatives.

Or
(ஆ) டெய்லாின் தேற்றத்தைக் கூறி நிறுவுக.
State and prove Taylor's Theorem.

Page 11 Code No. : 20575 B

Reg. No. :

\qquad

Code No. : 20576 B Sub. Code : SMMA 53

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fifth Semester
Mathematics - Core
STATICS

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. ஒரு புள்ளியின் மேல் செயல்படும் இருவிசைகளின் விளைவுவிசை மீச்சிறிது எனில் அவ்விரு விசைகளுக்கிடையேயான கோணமாவது \qquad .

(அ) 180°	(ஆ) 90°
(இ) 0°	(ஈ) 45°

If the resultant of two forces acting at a point be least then the angle between them is
(a) 180°
(b) 90°
(c) 0°
(d) 45°
2. இரு சமவிசசகளின் அளவு p, அவைகளுக்கிடையேயான கோணம் 60° எனில் விளைவு விசசயின் அளவு \qquad _.
(அ) $2 p$
(ஆ) $p \cdot \sqrt{3}$
(இ) $p \sqrt{2}$
(ஈ) $\frac{p}{\sqrt{2}}$
If two equal forces of magnitude p make 60° between them then the magnitude of their resultant is \qquad .
(a) $2 p$
(b) $p \cdot \sqrt{3}$
(c) $\quad p \sqrt{2}$
(d) $\frac{p}{\sqrt{2}}$
3. ஒரு விசையானது ஒரு பொருளை கடிகார முள் திசையில் திருப்ப முயற்சிக்கும் பொழுது அதன் திருப்பத்திறன் \qquad ஆகும்.
(அ) எதிர்மறை
(ஆ) நேர்மறை
(இ) பூச்சியம்
(ஈ) இவை ஏதுமில்லை
If a force tends to turn a body in the clockwise direction then its moment is \qquad .
(a) negative
(b) positive
(c) zero
(d) none of these

Page 2 Code No. : 20576 B
4. புள்ளி O -ஐப் பொறுத்து \bar{F} என்ற விசையின் திருப்புத்திறன் \qquad .
(அ) $\bar{F} \times O \bar{N}$
(ஆ) $\frac{\bar{F}}{\overline{O N}}$
(இ) $\bar{F} \cdot \overline{O N}$
(ஈ) $\overline{O N} \times \bar{F}$
The moment of a force \bar{F} about a point ' O ' is
\qquad .
(a) $\bar{F} \times O \bar{N}$
(b) $\frac{\bar{F}}{\overline{O N}}$
(c) $\bar{F} \cdot \overline{O N}$
(d) $\overline{O N} \times \bar{F}$
5. ஒரு திடப்பொருளின் மீது மூன்று விசைகள் செயல்பட்டு அப்பொரூளை சமநிலலயில் வைத்தால் அவைகள்
\qquad .
(அ) 0
(ஆ) செங்குத்தானவை
(இ) ஒரே தளத்தமைந்தவை
(ஈ) இணையானவை

Page 3 Code No. : 20576 B

If three forces acting on a rigid body are in equilibrium then they must be \qquad .
(a) 0
(b) perpendicular
(c) coplanar
(d) parallel
6. மூன்று இணையற்ற விசைகள் மட்டுமே

செயல்படுமாயயின் அவைகள் \qquad .
(அ) ஒரு புள்ளியில் சந்திக்கும்
(ஆ) செங்குத்தானவை
(இ) சுழலிணை
(ஈ) இவை ஏதுமில்லை
If there are only three non-parallel forces then they must \qquad .
(a) meet at a point
(b) perpendicular
(c) couple
(d) none of these
7. உராய்வின் அதிகபட்ச மதிப்பு \qquad .
(அ) $\mu \quad$ (ஆ) μR
(இ) $R \quad$ (ஈ) $\frac{F}{R}$

Page 4 Code No. : 20576 B

The maximum value of friction is \qquad .
(a) μ
(b) μR
(c) R
(d) $\frac{F}{R}$
8. சொரசொரப்பான சாய்தளத்தின் மேல் வைக்கப்பட்டிள்ள ஒரு பொருள் தளத்தில் வழுக்கும் நிலையில் இருப்பி், உராய்வின் செயல்பாடானது \qquad _.
(அ) தளத்தின் கீழ் நோக்கி இருக்கும்
(ஆ) தளத்திற்கு செங்குத்தாக இருக்கும்
(இ) தளத்தின் மேழ் நோக்கி இருக்கும்
(ஈ) இவை ஏதுமில்லை
If a body placed on a rough inclined plane be on the point of sliding down the plane then the friction acts \qquad .
(a) down the plane
(b) perpendicular to the plane
(c) up the plane
(d) none of these

Page 5 Code No. : 20576 B
9. ஒரு பொது சங்கிலியத்தின் ஏதாவது ஒரு புள்ளியில் இழுவிசை \qquad -
(அ) ws
(ஆ) $w c$
(இ) $w x$
(ศ) $w . y$

The tension at any point on a common catenary is
(a) $w s$
(b) $w c$
(c) $w x$
(d) $w \cdot y$
10. ஒரு சங்கிலியத்தின் கார்ட்டீசியன் சமன்பாடானது
(அ) $y^{2}=4 a x$
(ஆ) $x^{2}+y^{2}=a^{2}$
(இ) $s=c \tan \psi$
(ஈ) $y=c \cosh \left(\frac{x}{c}\right)$

The Cartesian equation of the catenary is
(a) $y^{2}=4 a x$
(b) $x^{2}+y^{2}=a^{2}$
(c) $s=c \tan \psi$
(d) $y=c \cosh \left(\frac{x}{c}\right)$

Page 6 Code No. : 20576 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) விசைகளுக்கிடையேயான முக்கோண விதியை கூறி நிறுவுக.

State and prove triangle law of forces.
Or
(ஆ) ABC என்பது ஒரு முக்கோணம். $O A, O B, O C$ வழியே இயங்கும் P, Q, R எனும் விசைகள் சமநிலையில் இருப்பின் $P: Q: R=a: b: c$ என்று நிறுவுக. O என்பது அம்முக்கோணத்தின் செங்கோட்டு மையம்.
$A B C$ is a given triangle. Force P, Q, R acting along the lines $O A, O B, O C$ are in equilibrium. Prove that $P: Q: R=a: b: c$ if ' O ' is the Orthocentre of the triangle.
12. (அ) மூன்று இணை விசைகள் சம நிலலயில் இருப்பின் அவை ஒவ்வொன்றும் மற்றைய இரண்டிற்கிடையேயான தூரத்துக்கு சாியான அளவு விகிதத்தில் இருக்கும் என காட்டுக.

If three parallel forces are in equilibrium then show that each is proportional to the distance between the other two.

Or
Page 7 Code No. : 20576 B
(ஆ) P மற்றும் Q என்பன ஒத்த இணை விசைகள். விசை Q அதன் திசைக்கு இணையாக x தூரம் நகர்த்தப்பட்டால், P மற்றும் Q-ன் விளைவு விசை $\frac{Q x}{P+Q}$ தூரம் நகரும் என நிறுவுக.
P and Q are two like parallel forces. If Q is moved parallel to itself through a distance ' x ' then prove that the resultant of P and Q moves through a distance $\frac{Q x}{P+Q}$.
13. (அ) மூன்று ஒருதள விசைகள் தேற்றத்றை எழுதி நிரூபி.

State and prove three coplanar forces theorem.

Or

(ஆ) ஒரு வழுவழுப்பான செங்குத்து சுவர் மற்றும் ‘ a ' தூரத்தில் உள்ள ஒரு கொக்கி ஆகியவற்றின் மேல் ' $16 a$ ' நீளமுள்ள சீரான தடி ஒன்று ஓய்வு நிலையில் இருந்தால் அந்த தடி செங்குத்துடன் ஏற்படுத்தும் கோணம் 30° எனக் காட்டுக.

A uniform rod of length $16 a$ rests in equilibrium against a smooth vertical wall, and upon a peg at a distance of ' a ' from the wall. Show that the inclination of the rod to the vertical is 30°.

Page 8 Code No. : 20576 B ஒரு பொருளின் சமநிலலயை விவாதிக்க.

Discuss the equilibrium of a particle on a rough inclined plane.

Or

(ஆ) சமநிலையில் அமைந்த சீரான ஏணியின் ஒரு முனை தரரயிலும் மறுமுனை செங்குத்தான சுவற்றிலும் சாத்தி வைக்கப்பட்டுள்ளது. தரை மற்றும் சுவற்றின் உராய்வு கெழுக்கள் முறையே μ, μ^{\prime} எனில், அவ்ஏணி சறுக்கும் நிலையில் இருக்கும்போது அது தரையோடு அமைக்கும் கோணம் θ எனக் கொண்டு $\tan \theta=\frac{1-\mu \mu^{\prime}}{2 \mu}$ என நிறுவுக.

A uniform ladder is in equilibrium with one end resting on the ground and the other end against a vertical wall which are both rough with coefficient of friction μ and μ^{\prime} respectively. If the ladder is one the point of slipping then show that the inclination θ of
the ladder to the ground is given by $\tan \theta=\frac{1-\mu \mu^{\prime}}{2 \mu}$.
15. (அ) ஒரு பொது சங்கிலியத்தின் வடிவ கணித பண்புகளைக் கூறி நிரூபி.

State and prove the Geometrical Properties of the Common Catenary.

Or
(ஆ) 110 மீட்டர் நீளமுள்ள ஒரு சங்கிலியின் கிடைவீச்சு 109 மீட்டர் எனில் சங்கிலியின் தொய்வு என்ன?

Find the sag if the length of the chain is 110 meters and horizontal span is 109 meters.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) விசைகள் P மற்றும் Q ஆகியவற்றின் விளைவு விசை R. விசை Q இரட்டிப்பாகும்போது R-ம் இரட்டிப்பாகிறது. மேலும் Q நேர் எதிர்திசையில் திரும்பும் போதும் $\quad R$ இரட்டிப்பாகிரறது. $P: Q: R=\sqrt{2}: \sqrt{3}: \sqrt{2}$ என காட்டுக.

The resultant of forces P and Q is R. If Q be doubled, R is doubled, R is also doubled if Q is reversed. Show that $P: Q: R=\sqrt{2}: \sqrt{3}: \sqrt{2}$.

Or
(ஆ) கிடைமட்டத்துடன் γ கோணத்தை ஏற்படுத்தும் ஒரு கயிற்றின் உதவியுடன், ஒரு எடையானது ' α ' சாய்கோணத்தைக் கொண்ட ஒரு வழுவழுப்பான தளத்தின் மீது வைக்கப்பட்டிள்ளது. கயிற்றின் சாய்வு மாறாமல் தளத்தின் சாய்கோணம் β-هிற்கு அதிகரிக்கப்படுகிறது எனில் கயிற்றின் இழுவிசையானது இருமடங்காகிறது. $\cot \alpha-2 \cot \beta=\tan \gamma$ என நிரூபி.

A weight is supported on a smooth plane of inclination ' α ' by a string inclined to the horizon at an angle γ. If the slope of the plane be increased to β and the slope of the string unaltered, the tension of the string is doubled. Prove that $\cot \alpha-2 \cot \beta=\tan \gamma$.
17. (அ) ஒரு கட்டிறுக்கப் பொருள் மீது செயல்படும் இரு எதிர் இணை விசைகளின் விளைவு விசையினைக் காண்க.

Find the resultant of two unlike parallel forces acting on a right body.

Or
(ஆ) $2 a$ நீளமும் W எடையும் கொண்ட ஒரு சீரான கட்டை ' b ' தூரத்தில் உள்ள இரு புள்ளிகளுக்கிடையில் கிடைமட்டத்தில் தாங்கப்படுகிறது. கட்டை நிலலதடுமாறாமல், அதன் இரு முனைகளிலும் வைக்கக்கூடிய அதிகபட்ச எடை முறையே W_{1}, W_{2} எனில் $\frac{W_{1}}{W+W_{1}}+\frac{W_{2}}{W+W_{2}}=\frac{b}{a}$ என நிரூபி.

A uniform plank of length ' 2α ' and weight W is supported horizontally on two vertical props at a distance ' b ' apart. The greatest weight that can be placed at the two ends in succession without upsetting the plank are W_{1} and W_{2} respectively. Prove that $\frac{W_{1}}{W+W_{1}}+\frac{W_{2}}{W+W_{2}}=\frac{b}{a}$.
18. (அ) ' a ' நீளமுள்ள ஒரு சீரான தடியின் ஒரு முனை வழுவழுப்பான செங்குத்து சுவர் மீதும் மறுமுனை ' l ' நீளமுள்ள கயிற்றால் கட்டப்பட்டும் தொங்கவிடப்பட்டுள்ளது. கயிற்றின் மறுமுனை செங்குத்து சுவற்றில் ஒரு புள்ளியில் பொருத்தப்பட்டுள்ளது. தடி சமநிலையில் இருக்கும்பொழுது அது சுவற்றில் உண்டாக்கும் கோணம் ' θ ' எனில் $\cos ^{2} \theta=\frac{l^{2}-a^{2}}{3 a^{2}}$ என நிறுவுக. மேலும் சமநிலை கிடைப்பதற்கு வாய்ப்புள்ள வரம்புகளின் விகிதம் $a: l$ எவை ?

A uniform rod of length ' a ' hangs against a smooth vertical wall being supported by means of a string of length ' l ', tied to one end of the rod, the other end of the string being attached to a point in the wall. Show that the rod can rest inclined to the wall at an angle ' θ ' given by $\cos ^{2} \theta=\frac{l^{2}-a^{2}}{3 a^{2}}$. What are the limits of the ratio $a: l$ in order that equilibrium may be possible?

Or

Page 13 Code No. : 20576 B
(ஆ) ' 2α ' நீளமுள்ள சீரான தடி ஒரு குழிவான அரைகோளத்தினுள் வைக்கப்பட்டு ஒருபகுதி வெளியே நீட்டிக் கொண்டிருக்கிறது. கோள ஆரம் 'r' என்க. அரைகோள மேல்வட்டம் கிடைமட்டத்தில் இருக்கிறது. கிடைமட்டத்திற்கு தடி சாய்ந்திருக்கும் கோணம் ' α ' என்றால் $2 r \cos 2 \alpha=a \cos \alpha$ என நிறுவுக. தடி உள்ளே அழுத்துமிடத்தில் எதிர்விசை மற்றும் வரம்பில் எதிர்விசை முறையே $W \tan \alpha, \frac{W \cos 2 \alpha}{\cos \alpha}$ என நிறுவுக. இங்கு W என்பது தடியின் எடை.

A heavy uniform rod of length 2α, rests partly within and partly without a smooth hemispherical bowl of radium ' r ', fixed with its rim horizontal. If ' α ' is the inclination of the rod to the horizon, show that $2 r \cos 2 \alpha=a \cos \alpha$. Also prove that the reactions at the points of contact of the rod with the bowl and with the rim are respectively $W \tan \alpha$ and $\frac{W \cos 2 \alpha}{\cos \alpha}$ where W is the weight of the rod.
19. (அ) உராய்வுக்கெழு, உராய்வுக் கோணம், நிலை உராய்வு மற்றும் உராய்வுக் கூம்பு ஆகியவற்றை விளக்குக.

Explain coefficient of friction, angle of friction, statical friction and cone of friction.

Or
(ஆ) ஒரு சீரான தடி அசைவற்ற நிலையில் சொரசொரப்பான வெற்று கோளத்தினுள் உள்ளது. தடி ' 2α ' கோணத்தை கோள் மையத்தில் உள் அடக்கியிருக்கிறது. உராய்வுக் கோணம் ' λ ' எனக் கொண்டு தடி கிடைமட்டத்திடன் உருவாக்கும் சாய்வுகோணம் $\theta=\tan ^{-1}\left[\frac{\sin 2 \lambda}{\cos 2 \alpha+\cos 2 \lambda}\right]$ எனக் காட்டுக.

A uniform rod rests in limiting equilibrium within a rough hollow sphere. If the rod subtends an angle ' 2α ' at the centre of the sphere and if λ is the angle of friction, show that the inclination of the rod to the horizontal is $\theta=\tan ^{-1}\left[\frac{\sin 2 \lambda}{\cos 2 \alpha+\cos 2 \lambda}\right]$.
20. (அ) ' l ' நீளம் கொண்ட ஒரு சீரான சங்கிலி அதன் எடைக்கு ' n ' மடங்கு இழுவிசையை மட்டும் தாங்கக்கூடியது. அது ஒரே கிடைக்கோட்டில் உள்ள இரு புள்ளிகளில் தொங்குகிறது. அதன் மையப் புள்ளியில் ஏற்படக்கூடிய மீச்சிறு தொய்வு $l\left[n-\sqrt{n^{2}-\frac{1}{4}}\right]$ என காட்டுக.

A uniform chain of length ' l ' which can just bear a tension of ' n ' times its weight is suspended between two points in the same horizontal line. Show that the least possible sag in the middle is $l\left[n-\sqrt{n^{2}-\frac{1}{4}}\right]$. Or
(ஆ) பொது சங்கிலியத்தின் கார்ட்டீசியன் சமன்பாட்டை தருவி.

Derive the Cartesian equation of a common catenary.

Reg. No. :

Code No. : 20577 B Sub. Code : SMMA 54

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fifth Semester
Mathematics - Main

TRANSFORMS AND THEIR APPLICATIONS

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. $\quad F[f(a x)]=$ \qquad .
(அ) $F\left(\frac{s}{a}\right)$ (ஆ) $\frac{1}{a} F\left(\frac{s}{a}\right)$
(இ) $a F\left(\frac{s}{a}\right)$
(ศ) $\frac{1}{a} F\left(\frac{a}{s}\right)$
$F[f(a x)]=$ \qquad
(a) $\quad F\left(\frac{s}{a}\right)$
(b) $\frac{1}{a} F\left(\frac{s}{a}\right)$
(c) $\quad a F\left(\frac{s}{a}\right)$
(d) $\frac{1}{a} F\left(\frac{a}{s}\right)$
2. $\quad F(s)=F[f(x)]$ எனில் $F[x f(x)]=$ \qquad .
(அ) $(-1) \frac{d[F(s)]}{d s}$
(ஆ) $i \frac{d[F(s)]}{d s}$
(இ) $(-i) \frac{d(F(s))}{d s}$
(ஈ) $i \frac{d[F(s)]}{d s}$

If $F(s)=F[f(x)]$, then $F[x f(x)]=$ \qquad .
(a) $\quad(-1) \frac{d[F(s)]}{d s}$
(b) $i \frac{d[F(s)]}{d s}$
(c) $\quad(-i) \frac{d(F(s))}{d s}$
(d) $\frac{d[F(s)]}{d s}$
3. $F_{c}\left[f^{\prime}(x)\right]=$
(அ) $\sqrt{\frac{2}{\pi}} f(0)+s F_{s}(s)$ (ஆ) $\sqrt{\frac{2}{\pi}} f(0)+s F_{c}(s)$
(இ) $-\sqrt{\frac{2}{\pi}} f(0)+s F_{c}(s) \quad$ (下) $\quad-\sqrt{\frac{2}{\pi}} f(0)+s F_{s}(s)$ $F_{c}\left[f^{\prime}(x)\right]=$ \qquad .
(a) $\sqrt{\frac{2}{\pi}} f(0)+s F_{s}(s)$
(b) $\sqrt{\frac{2}{\pi}} f(0)+s F_{c}(s)$
(c) $-\sqrt{\frac{2}{\pi}} f(0)+s F_{c}(s)$
(d) $-\sqrt{\frac{2}{\pi}} f(0)+s F_{s}(s)$

Page 2 Code No. : 20577 B
4. $\quad F_{s}\left[e^{-x}\right]=$
$\begin{array}{ll}\text { (அ) } \sqrt{\frac{2}{\pi}} & \text { (ஆ) } \sqrt{\frac{\pi}{2}}\end{array}$
(இ) $\sqrt{2 \pi}$
(雨) $\sqrt{\pi}$
$F_{s}\left\lfloor e^{-x}\right\rfloor=$ \qquad .
(a) $\sqrt{\frac{2}{\pi}}$
(b) $\sqrt{\frac{\pi}{2}}$
(c) $\sqrt{2 \pi}$
(d) $\sqrt{\pi}$
5. $(0, \pi)$-இல் $F_{c}[x]=$ \qquad .

$$
\begin{array}{ll}
\text { (அ) } \frac{1}{n}\left[(-1)^{n}-1\right] & \text { (ஆ) } \frac{1}{n^{2}}\left[(-1)^{n}-1\right] \\
\text { (இ) } \frac{1}{n^{2}}(-1)^{n} & \text { (ஈ) } \frac{1}{n^{2}}\left[(-1)^{n}+1\right] \\
F_{c}[x]=
\end{array}
$$

(a) $\frac{1}{n}\left[(-1)^{n}-1\right]$
(b) $\frac{1}{n^{2}}\left[(-1)^{n}-1\right]$
(c) $\frac{1}{n^{2}}(-1)^{n}$
(d) $\frac{1}{n^{2}}\left[(-1)^{n}+1\right]$

Page 3 Code No. : 20577 B
6. $(0, l)$ இல் $F_{s}[f(x)]=$ \qquad
(அ) $\int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x \quad$ (ஆ) $2 \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x$
(இ) $\int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x \quad$ (ஈ) $2 \int_{0}^{l} \frac{f(x)}{l} \sin n \pi x d x$
$F_{s}[f(x)]$ in $(0, l)=$ \qquad .
(a) $\int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x$
(b) $2 \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x$
(c) $\int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x$
(d) $2 \int_{0}^{l} \frac{f(x)}{l} \sin n \pi x d x$
7. $Z\left[a^{n-1}\right]=$ \qquad .
(அ) $\frac{z}{z+a}$
(ஆ) $\frac{1}{z+a}$
(இ) $\frac{z}{z-a}$
(ஈ) $\frac{1}{z-a}$
$Z\left[a^{n-1}\right]=$ \qquad .
(a) $\frac{z}{z+a}$
(b) $\frac{1}{z+a}$
(c) $\frac{z}{z-a}$
(d) $\frac{1}{z-a}$

Page 4 Code No. : 20577 B
8. $Z\left[\sin \frac{n \pi}{2}\right]=$
(அ) $\frac{z^{2}}{z+1}$
(ஆ) $\frac{z}{z+1}$
(இ) $\frac{z}{z^{2}+1}$
(ஈ) $\frac{z}{z^{2}-1}$
$Z\left[\sin \frac{n \pi}{2}\right]=$ \qquad
(a) $\frac{z^{2}}{z+1}$
(b) $\frac{z}{z+1}$
(c) $\frac{z}{z^{2}+1}$
(d) $\frac{z}{z^{2}-1}$
9. $\quad Z^{-1}\left[\frac{z}{(z-1)^{2}}\right]=$ \qquad .

$$
\text { (அ) } n-1
$$

(ஆ) n
(இ) $n+1$
(ஈ) n^{2}
$Z^{-1}\left[\frac{z}{(z-1)^{2}}\right]=$ -.
(a) $n-1$
(b) n
(c) $n+1$
(d) n^{2}

Page 5 Code No. : 20577 B
10. $Z^{-1}\left[\frac{1}{(z-2)^{2}}\right]=\longrightarrow$, (இதில $k \geq 1$)
(丹) $(k-1) 2^{k-1}$ (ஆ) $(k-1)(2)^{k-1}$
(இ) $\frac{k(2)^{k-1}}{2}$
(${ }^{(\pi)} \frac{2^{(k-1)}}{2 k}$
For $k \geq 1, Z^{-1}\left[\frac{1}{(z-2)^{2}}\right]=$ \qquad .
(a) $(k-1) 2^{k-1}$
(b) $\quad(k-1)(2)^{k-1}$
(c) $\frac{k(2)^{k-1}}{2}$
(d) $\frac{2^{(k-1)}}{2 k}$

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) $f(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x|>a\end{array}\right.$ எөில் $f(x)$-இன் ஃபூரியi உருமாற்றத்ணதக் காண்க.
Find the Fourier transform of
$f(x)=\left\{\begin{array}{l}1 \text { in }|x|<a \\ 0 \text { in }|x|>a\end{array}\right.$.
Or
Page 6 Code No. : 20577 B
(ஆ) ஃபூரியர் உருமாற்றத்திற்கான பார்சிவேலின் அடையாளத் தேற்றத்தை கூறி நிறுவுக.
State and prove the Parseval's identify for Fourier Transform.
12. (அ) $f(x)=x e^{-x^{2} / 2}$ ஆனது ஃபூரியர் சைன் உருமாற்றத்றதப் பொறுத்து சுய தலைகீழி என காட்டுக.

Show that $f(x)=x e^{-x^{2} / 2}$ is self reciprocal w.r.to. Fourier sine transform.

Or
(ஆ) உருமாற்றங்களைப் பயன்படுத்தி
$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ இன் மதிப்பபக் காண்க.
Evaluate $\quad \int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \quad$ using transforms.
13. (அ) $f(x)=\cos k x$ இன் முடிவுள்ள ஃபூரியர் சைன் உருமாற்றத்தை $0<x<\pi$-இல் காண்க.

Find the finite Fourier Sine transform of $f(x)=\cos k x$ in $0<x<\pi$.

Or

Page 7 Code No. : 20577 B
(ஆ) $f(x)=\left(1-\frac{x}{\pi}\right)^{2}$-இன் முடிவுள்ள ஃபூரியர் கோசைன் உருமாற்றத்தை $0<x<\pi$-இல் காண்க.
Find the finite Fourier Cosine transform of $f(x)=\left(1-\frac{x}{\pi}\right)^{2}$ in $0<x<\pi$.
14. (அ)
$Z[f(n+m)]=Z^{m} F(Z)-\sum_{i=0}^{m-1} f(i) Z^{m-i}, \quad n \geq-m$ என நிறுவுக.
Prove that $Z[f(n+m)]=Z^{m} F(Z)-\sum_{i=0}^{m-1} f(i) Z^{m-i}$, $n \geq-m$.

Or
(ஆ) $Z\left[\frac{1}{(n+1)(n+2)}\right]$-இன் மதிப்பபக் காண்க.
Find $Z\left[\frac{1}{(n+1)(n+2)}\right]$.
15. (அ)
$Z^{-1}\left[\frac{1}{1-1.5 Z^{-1}-0.5 Z^{-2}}\right]$ இன் மதிப்பைக் காண்க.
Find $Z^{-1}\left[\frac{1}{1-1.5 Z^{-1}-0.5 Z^{-2}}\right]$.
Or
Page 8 Code No. : 20577 B
(ஆ) $Z^{-1}\left[\frac{z^{3}}{(z-1)^{2}(z-2)}\right]$-இன் மதிப்பபக் காண்க.
Find $Z^{-1}\left[\frac{z^{3}}{(z-1)^{2}(z-2)}\right]$.
PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) $f(x)=e^{-a|x|}$-இன் ஃபூரியர் உருமாற்றத்தைக் காண்க. மேலும்
(i) $\int_{0}^{\infty} \frac{\cos x t}{a^{2}+t^{2}} d t=\frac{\pi}{2 a} e^{-a|x|}$ எனவும்
(ii) $F\left[x e^{-a|x|}\right]=\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$ எனவும் தருவி.

Find the Fourier Transform of $f(x)=e^{-a|x|}$ and hence deduce that
(i) $\int_{0}^{\infty} \frac{\cos x t}{a^{2}+t^{2}} d t=\frac{\pi}{2 \alpha} e^{-a|x|}$.
(ii) $F\left[x e^{-a|x|}\right]=\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$.

Or

Page 9 Code No. : 20577 B

$$
\begin{aligned}
& \text { (ஆ) } f(x)=\left\{\begin{array}{ll}
a^{2}-x^{2}, & |x|<a \\
0, & |x|>a>0
\end{array} \quad\right. \text { இன் ஃபூரியர் } \\
& \text { உருமாற்றம் } \\
& \text { எனக்காட்டு. } \quad 2 \sqrt{\frac{2}{\pi}}\left(\frac{\sin a s-a s \cos a s}{s^{3}}\right) \\
& \text { எனவும்ம் } \quad \int_{0}^{\infty} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{\pi}{4} \\
& \text { பான்பவேலித்த்தி } \int_{0}^{\infty}\left(\frac{\sin t-t \cos t}{t^{3}}\right)^{2} d t=\frac{\pi}{15} \text { எனவும் }
\end{aligned}
$$

நிரூபி.
Show that the Fourier transform of $f(x)= \begin{cases}a^{2}-x^{2}, & |x|<a \\ 0, & |x|>a>0\end{cases}$
is $2 \sqrt{\frac{2}{\pi}}\left(\frac{\sin \alpha s-a s \cos \alpha s}{s^{3}}\right)$. Hence deduce that $\int_{0}^{\infty} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{\pi}{4}$ using Parseval's identity show that $\int_{0}^{\infty}\left(\frac{\sin t-t \cos t}{t^{3}}\right)^{2} d t=\frac{\pi}{15}$.
17. (அ) $f(x)=\frac{e^{-a x}}{x}$ என்ற சார்பின் ஃபூரியர் சைன் உருமாற்றத்தைக் காண்க.
Find the Fourier sine transform of the function $f(x)=\frac{e^{-a x}}{x}$.

Or
(ஆ) $f(x)=e^{-a^{2} x^{2}}$ என்ற சார்பி் ஃபூரியர் கோசைன் உருமாற்றத்தைக் காண்க. மேலும் $F_{s}\left\lfloor x e^{-a^{2} x^{2}}\right\rfloor$ மதிப்பபக் காண்க.
Find the Fourier cosine transform of $f(x)=e^{-a^{2} x^{2}}$ and hence find $F_{s}\left\lfloor x e^{-a^{2} x^{2}}\right]$.
18. (அ) $f(x)=x^{2}$ என்ற சார்பன் முடிவுள்ள ஃபூரியர் சைன் மற்றும் ஃபூரியர் கோசைன் உருமாற்றங்களை $0<x<l$ என்ற இடைவெளியில் காண்க.

Find the finite Fourier sine and cosine transform of $f(x)=x^{2}$ in $0<x<l$.

Or

(ஆ) $(0, l)$-இல் $f(x)=e^{a x}$ என்ற சார்பின் முடிவுள்ள ஃபூரியர் சைன் மற்றும் ஃபூரியர் கோசைன் உருமாற்றங்களைக் காண்க.

Find the finite Fourier sine and cosine transform of $f(x)=e^{a x}$ in $(0, l)$.

Page 11 Code No. : 20577 B
19. (அ) $Z\left[n a^{n}\right]$ மற்றும் $Z\left[(-2)^{n}\right]$ ஆகியவற்றின் மதிப்புகளளக் காண்க.
Find $Z\left(n a^{n}\right)$ and $Z\left[(-2)^{n}\right]$.
Or
(ஆ) இறுதிமதிப்பு (கடைநிலை மதிப்பு) தேற்றத்தை கூறி நிறுவுக.

State and prove
20. (அ) $Z^{-1}\left[\frac{z^{2}+2 z}{z^{2}+2 z+4}\right]$ இன் மதிப்பபக் காண்க.

Find $Z^{-1}\left[\frac{z^{2}+2 z}{z^{2}+2 z+4}\right]$.
Or
(ஆ) எச்ச தேற்றத்றைப் பயன்படுத்தி
$Z^{-1}\left[\frac{z^{2}-3 z}{(z-5)(z+2)}\right]$-இன் மதிப்பைக் காண்க.
Find $\quad Z^{-1}\left[\frac{z^{2}-3 z}{(z-5)(z+2)}\right] \quad$ using residue theorem.

Reg. No. :

Code No. : 20579 B Sub. Code : SMMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core
NUMBER THEORY

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $1+2+3+\ldots+n$ என்ற தொடாின் மதிப்பு.
(அ) $\frac{n(n+1)}{2}$
(ஆ) $\frac{n(n+1)}{3}$
(இ) $n(n+1)$
(※) $\frac{n(n+1)}{6}$

The value of $1+2+3+\ldots .+n$ is
(a) $\frac{n(n+1)}{2}$
(b) $\frac{n(n+1)}{3}$
(c) $n(n+1)$
(d) $\frac{n(n+1)}{6}$
2. பாஸ்கல் முக்கோணத்தின் n வது நிறறயில் $(k+1)$-வது எண் யாது?
(அ) $\binom{n}{k}$
(ஆ) $\binom{n}{k+1}$
(இ) $\binom{n}{k-1}$
(ஈ) $\quad\binom{n}{k+2}$

In the Pascal's triangle, the $(k+1)^{t h}$ number in the $n^{\text {th }}$ row is
(a) $\binom{n}{k}$
(b) $\quad\binom{n}{k+1}$
(c) $\binom{n}{k-1}$
(d) $\binom{n}{k+2}$
3. மீ.பொ.வ. $(119,272)$ ன் மதிப்பு
(அ) 27
(ஆ) 9
(இ) 17
(ஈ) 57
The gcd $(119,272)$ is
(a) 27
(b) 9
(c) 17
(d) 57

Page 2 Code No. : 20579 B
4. $\quad k$ பூச்சியமல்லாத முழு எண் எனில் மீ.பொ.வ. ($k a, k b$) $=$?
(அ) k மீ.பொ.வ. (a, b) (ஆ) $|k|$ மீ.பொ.வ. (a, b)
(இ) மீ.பொ.வ. $(a, b) \quad$ (ஈ) $\quad k^{2}$ மீ.பொ.வ. (a, b)
For any integer $k \neq 0, \operatorname{gcd}(k a, k b)=$?
(a) $\quad k \operatorname{gcd}(a, b)$
(b) $\quad|k| \operatorname{gcd}(a, b)$
(c) $\operatorname{gcd}(a, b)$
(d) $\quad k^{2} \operatorname{gcd}(a, b)$
5. வகுத்தல் செய்வழிப்படி, ஒவ்வொரு இரட்டைப்படை மிகை எண்ணணயும் தனிச்சிறப்புப்பட எழுத முடியும்
(அ) $4 n+1$
(ஆ) $4 n+3$
(இ) $4 n$ (or) $4 n+2$
(ஈ) இவையேதும் இல்லை
According to division algorithm, every positive even integer can be uniquely written as
(a) $4 n+1$
(b) $4 n+3$
(c) $4 n$ (or) $4 n+2$
(d) none of these

Page 3 Code No. : 20579 B
6. கீழே கொடுக்கப்பட்டுள்ளவற்றுள் விகிதமுறா எண்கள் எது?
(அ) $3^{1 / 2}$
(ஆ) $11^{1 / 2}$
(இ) $4^{1 / 4}$
(ஈ) மேற்குறிப்பிட்ட அனைத்தும்
Which of the following is irrational?
(a) $3^{1 / 2}$
(b) $11^{1 / 2}$
(c) $4^{1 / 4}$
(d) All the above
7. $\quad 5^{48}$ ஐ 7 ஆல் வகுக்கும் போது கிடைக்கும் மீதி
(அ) 1
(ஆ) 2
(இ) 4
(ஈ) 9

If 5^{48} is divided by 12 , then the remainder is
(a) 1
(b) 2
(c) 4
(d) 9
8. $5 x \equiv 2$ (மட்டு 26) என்ற ஒருபடி ஒருங்கிசசவு சமன்பாட்டின் ஒரு தீர்வு
(அ) 10
(ஆ) 12
(இ) 14
(ஈ) 16

Page 4 Code No. : 20579 B

A solution of the linear congruence $5 x \equiv 2(\bmod 26)$ is
(a) 10
(b) 12
(c) 14
(d) 16
9. $(p-1)!\equiv-1$ (மட்டு $\left.p^{2}\right)$ என்ற ஒருங்கிசசவு சமன்பாட்டை உறுதி செய்யும் மிகச் சிறிய ஒற்றைப்படை பகா எண்
(அ) 5
(ஆ) 7
(இ) 11
(ஈ) 13

The least odd prime for which the congruence $(p-1)!\equiv-1\left(\bmod p^{2}\right)$ holds good is
(a) 5
(b) 7
(c) 11
(d) 13
10. ஜீரோ (புனை) பகா எண்களின் எண்ணிக்கை
(அ) 0
(ஆ) 1
$\begin{array}{ll}\text { (இ) } & \begin{array}{ll}\text { என்றுக்கு மேற்பட்டது } \\ \text { எண்ணிலடங்கியது }\end{array} \\ \text { (ஈ) எண்ணிலடங்காதது }\end{array}$
Page 5 Code No. : 20579 B

The number of pseudo primes is
(a) 0
(b) 1
(c) more than 1 but finite
(d) infinite

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) நிரூபிக்க : $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{4 n^{3}-n}{3}$
$\forall n \geq 1$.
Prove that $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{4 n^{3}-n}{3}$ $\forall n \geq 1$.

Or
(ஆ) முக்கோண எண்ணை வரையறுக்க. எடுத்துக்காட்டு கொடு முதல் n இயல் எண்களின் கூடுதல் என்பது முக்கோண இயல் எண் ஆகும் என நிரூபி.

Define a triangular number. Give an example prove that the sum of the first n natural numbers is triangular.

Page 6 Code No. : 20579 B
12. (அ) யூக்லிட்டின் முற்கோளை கூறி நிரூபி.

State and prove the Euclid's Lemma.
Or
(ஆ) மீ.பொ.வ. $(a, b)=1, \quad$ எனில் மீ.பொ.வ. $\left.(a+b), a^{2}-a b+b^{2}\right)$ ன் மதிப்பு 1 அல்லது 3 என நிரூபி.
If $\operatorname{gcd}(a, b)=1 \quad$ prove that $\left.\operatorname{gcd}(a+b), a^{2}-a b+b^{2}\right)=1$ or 3 .
13. (அ) $n>1$ எனில் $n^{2}+4$ ஒரு பகா எண் எのக் காட்டுக.

If $n>1$, show that $n^{2}+4$ is composite.
Or
(ஆ) 1949 மற்றும் 1951 ஆகியன இரட்டைப் பகா எண்கள் என்பதைச் சாிபார்க்க.

Verify that the integers 1949 and 1951 are twin primes.
14. (அ) a மற்றும் b என்ற தன்னிச்சசயான முழு எண்களுக்கு $a \equiv b$ (மட்டு n) ஆக இருக்க தேவையான மற்றும் போதுமான கட்டிப்பாடு a மற்றும் b ஆகியன n ல் வகுக்கப்படும் பொழுது ஒரு மாதிாியான எதிர்மறையற்ற எச்சத்தை விட்டுச் செல்லும் என நிரூபி.

Page 7 Code No. : 20579 B

Prove that for arbitrary integers a and b, $a \equiv b(\bmod n)$ if and only if a and b leave the same non-negative remainder when divided by n.

Or

(ஆ) $9^{9^{9}}$ என்ற எண்ணின் கடைசி இரண்டு இலக்கங்களைக் காண்க.

Find the last two digits of the number. $9^{9^{9}}$
15. (அ) பெர்மாட்சின் தேற்றத்தைக் கூறி நிறுவுக.

State and prove Fermat's Theorem.

Or
(ஆ) P ஒரு பகா எண் எனில், எந்தவொரு முழு எண் a க்கும் $\quad P \mid a^{p}+(p-1)!\quad a$ மற்றும் $P \mid(p-1)!a^{p}+a$ என நிரூபி.

If P is a prime, prove that for any integer $a, P \mid a^{p}+(p-1)!$ and $P \mid(p-1)!a^{p}+a$.

Page 8 Code No. : 20579 B

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) ஈறுருப்பு தேற்றத்தை நிர்மாணிக்கவும்.

Establish the binomial theorem.
Or
(ஆ) (i) ஆர்க்கிமீடியன் பண்பினை எழுதி நிரூபி்க்.
(ii) தொகுத்தறி முறை (முடிவுறு) யின் முதல் கொள்கையை எழுதி நிரூபிக்க.
(i) State and prove Archimedean Property.
(ii) State and prove the first principle of finite induction.
17. (அ) வகுத்தல் செய்வழியை கூறி நிரூபி.

State and prove the Division Algorithm.
Or
(ஆ) $180 x+75 y=9000$ என்ற நோியடையோ பாண்டைன் சமன்பாட்டைத் தீர்க்கவும்.

Solve the linear Diophantine equation $180 x+75 y=9000$.

Page 9 Code No. : 20579 B
18. (அ) (i) எண்ணியலின் அடிப்படைத் தேற்றத்றதக் கூறி நிறுவுக.
(ii) நிரூபிக்க $48 \mid m\left(m^{2}+20\right)$.
(i) State and prove the fundamental theorem of Arithmetic.
(ii) Prove that $48 \mathrm{~lm}\left(m^{2}+20\right)$.

Or

(ஆ) கோல்டுபாக் அனுமானத்தை விரிவாக
விளக்கவும்.
Discuss about the Goldbach conjecture.
19. (அ) (i) $c a \equiv c b$ (மட்டு n) $d=$ மீ.பொ.வ. (c.n.) எனில் $a \equiv b$ (மட்டு $\frac{n}{d}$) என நிரூபி.
(ii) 1 ! +2 ! $+3!+\ldots+99!+100$! ஐ 12 வகுக்கும் போது கிடைக்கும் மீதி யாது ?
(i) If, $c a \equiv c b(\bmod n)$ prove that $a \equiv b\left(\bmod \frac{n}{d}\right)$ when $d=$ G.C.D. (c.n.).
(ii) What is the remainder when the sum $1!+2!+3!+\ldots+99!+100$! is divided by 12.

Or
Page 10 Code No. : 20579 B
(ஆ) $(a, m) \mid b$ எனில், $a x \equiv b$ (மட்டு m) என்பது சரியாக (a, m) தீர்வுகளைக் கொண்டுள்ளது என நிரூபி.

If $(a, m) \mid b$ prove that $a x \equiv b(\bmod m)$ has exactly (a, m) solutions.
20. (அ) P ஒரு பகா எண் எனில் $a^{P} \equiv a$ (மட்டு P) என நிரூபி. இதில் a என்பது ஒரு முழு எண்.

If P is a prime, then $a^{P} \equiv a(\bmod P)$ for any integer a.

Or
(ஆ) n என்பது ஒரு ஒற்றைப்படை போலி பகா எண் எனில், $M n=2^{n}-1$ என்பது மிகப்பொிய ஒன்று என நிரூபி.

If n is an odd pseudo prime, then prove that $M n=2^{n}-1$ is larger one.

Reg. No. :

Code No. : 20579 E Sub. Code : SMMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core

NUMBER THEORY

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The value of $1+2+3+\ldots .+n$ is \qquad .
(a) $\frac{n(n+1)}{2}$
(b) $\frac{n(n+1)}{3}$
(c) $n(n+1)$
(d) $\frac{n(n+1)}{6}$
2. In the Pascal's triangle, the $(k+1)^{t h}$ number in the $n^{\text {th }}$ row is
(a) $\quad\binom{n}{k}$
(b) $\quad\binom{n}{k+1}$
(c) $\binom{n}{k-1}$
(d) $\binom{n}{k+2}$
3. The $\operatorname{gcd}(119,272)$ is
(a) 27
(b) 9
(c) 17
(d) 57
4. For any integer $k \neq 0, \operatorname{gcd}(k a, k b)=$?
(a) $k \operatorname{gcd}(a, b)$
(b) $\quad|k| \operatorname{gcd}(a, b)$
(c) $\operatorname{gcd}(a, b)$
(d) $\quad k^{2} \operatorname{gcd}(a, b)$
5. According to division algorithm, every positive even integer can be uniquely written as
(a) $4 n+1$
(b) $4 n+3$
(c) $4 n$ or $4 n+2$
(d) none of these
6. Which of the following is irrational?
(a) $3^{1 / 2}$
(b) $11^{1 / 2}$
(c) $4^{1 / 4}$
(d) All the above
7. If 5^{48} is divided by 12 , then the remainder is
(a) 1
(b) 2
(c) 4
(d) 9

Page 2 Code No. : 20579 E
8. A solution of the linear congruence $5 x \equiv 2(\bmod 26)$ is
(a) 10
(b) 12
(c) 14
(d) 16
9. The least odd prime for which the congruence $(p-1)!\equiv-1\left(\bmod p^{2}\right)$ holds good is
(a) 5
(b) 7
(c) 11
(d) 13
10. The number of pseudo primes is
(a) 0
(b) 1
(c) more than 1 but finite
(d) infinite

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{4 n^{3}-n}{3}$ $\forall n \geq 1$.

Or

(b) Define a triangular number. Give an example prove that the sum of the first n natural numbers is triangular.

Page 3 Code No. : 20579 E
12. (a) State and prove the Euclid's Lemma.

Or
(b) If $\operatorname{gcd}(a, b)=1 \quad$ prove that $\operatorname{gcd}\left(a+b, a^{2}-a b+b^{2}\right)=1$ or 3 .
13. (a) If $n>1$, show that $n^{2}+4$ is composite.

Or

(b) Verify that the integers 1949 and 1951 are twin primes.
14. (a) Prove that for arbitrary integers a and b, $a \equiv b(\bmod n)$ if and only if a and b leave the same non-negative remainder when divided by n.

Or

(b) Find the last two digits of the number. $9^{9^{9}}$
15. (a) State and prove Fermat's Theorem.

Or

(b) If P is a prime, prove that for any integer $a, P \mid a^{p}+(p-1)!$ and $P \mid(p-1)!a^{p}+a$.

Page 4 Code No. : 20579 E
[P.T.O.]

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Establish the binomial theorem.

Or
(b) (i) State and prove Archimedean Property.
(ii) State and prove the first principle of finite induction.
17. (a) State and prove the Division Algorithm.

Or
(b) Solve the linear Diophantine equation $180 x+75 y=9000$.
18. (a) (i) State and prove the fundamental theorem of Arithmetic.
(ii) Prove that $48 \mid m\left(m^{2}+20\right)$.

Or
(b) Discuss about the Goldbach conjecture.

Page 5 Code No. : 20579 E
19. (a) (i) If, $c a \equiv c b(\bmod n)$ prove that

$$
a \equiv b\left(\bmod \frac{n}{d}\right) \text { when } d=\text { G.C.D. (c.n.). }
$$

(ii) What is the remainder when the sum $1!+2!+3!+\ldots+99!+100$! is divided by 12.

Or

(b) If $(a, m) \mid b$ prove that $a x \equiv b(\bmod m)$ has exactly (a, m) solutions.
20. (a) If P is a prime, then $a^{P} \equiv a(\bmod P)$ for any integer a.

Or
(b) If n is an odd pseudo prime, then prove that $M n=2^{n}-1$ is larger one.

Page 6 Code No. : 20579 E

Reg. No. :

Code No. : 20580 B Sub. Code : SMMA 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core
GRAPH THEORY
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. ஒன்றுக்கு மேற்பட்ட உறுப்பினர்கள் கொண்ட ஒரு கூட்டத்தில், சமமான நண்பர்களையுடைய உறுப்பினர்களின் எண்ணிக்கை

(அ)	3

In any group of more than one people, the number of people having the same number of friends inside the group is
(a) 3
(b) 2
(c) 4
(d) 5
2. ' 6 ' புள்ளிகளைக் கொண்ட ஒரு வரைபின் இணையா புள்ளி எண் 2 எனில் அதன் தொடுபுள்ளி எண்
\qquad .
(அ) 4 (ஆ) 2
(இ) 6
(ஈ) 3
For a graph with 6 points, the independence number is 2 . Then the covering number is
\qquad -
(a) 4
(b) 2
(c) 6
(d) 3
3. $\quad C_{8}$-ன் சிறுசுற்றின் அளவு

(அ) 2	(ஆ) 4
(இ) 6	(ஈ) 8

Girth of C_{8} is
(a) 2
(b) 4
(c) 6
(d) 8
4. $\quad G$ ஒரு தொடுத்த வரரபு எனில் $w(G)=$ \qquad .
(அ) 0
(ஆ) 2
(இ) 1
(ஈ) கோடுகளின் எண்ணிக்கை

Page 2 Code No. : 20580 B

If G is a connected graph then $w(G)=$
\qquad .
(a) 0
(b) 2
(c) 1
(d) number of edges
5. 10 புள்ளிகள் கொண்ட ஒரு மரத்தின் கோடுகளின் எண்ணிக்கை
(அ) 10
(ஆ) 11
(இ) 9
(ஈ) 5
Number of edges of a tree of order 10 is
(a) 10
(b) 11
(c) 9
(d) 5
6. எந்த தேற்றம் டிரக்கின் தேற்றத்தை விட வலிமைமிக்கது ?
(அ) கெய்லே தேற்றம் (ஆ) ஆயிலாின் தேற்றம்
(இ) ஹாமில்டன் தேற்றம் (ஈ) சவ்டால் தேற்றம்
Which theorem is stronger than Dirac's theorem?
(a) Cayley theorem
(b) Euler's theorem
(c) Hamilton's theorem
(d) Chvatal's theorem

Page 3 Code No. : 20580 B
7. $\quad r$ முகங்கள் கொண்ட எந்தவொரு (p, q) தொடுத்த தளவரரயின் குறைந்தபட்ச கோடுகளின் எண்ணிக்கை
(அ) $\frac{3 r}{2}$
(ஆ) $\frac{2 r}{3}$
(இ) $3 p+6$
(ஈ) $p-1$
In any connected plane (p, q) graph with r faces, the minimum number of edges is
(a) $\frac{3 r}{2}$
(b) $\frac{2 r}{3}$
(c) $3 p+6$
(d) $p-1$
8. குறறந்த பட்சம் 2 புள்ளிகளைக் கொண்ட மரம் T-ன் வண்ண எண்
(அ) 1
(ஆ) 2
(இ) 0
(ஈ) 3

The chromatic number of a tree T with atleast 2 points is
(a) 1
(b) 2
(c) 0
(d) 3
9. G ஒரு (p, q) வரைபு மற்றும் $f(G, \lambda)=\lambda^{r}+s \lambda^{r-1}+\ldots$ எனில் r, s முறையே
(அ) p, q
(ஆ) q, p
(இ) $q,-p$
(ஈ) $p,-q$

Page 4 Code No. : 20580 B

If G is a (p, q) graph and $f(G, \lambda)=\lambda^{r}+s \lambda^{r-1}+\ldots$. then r, s are respectively
(a) p, q
(b) q, p
(c) $q,-p$
(d) $p,-q$
10. ஒரு திசைவரைபில்
(அ) $\Sigma d^{+}(v)=\Sigma d^{-}(v)=q$ (ஆ) $\Sigma d^{+}(v)=2 q$
(இ) $\Sigma d^{-}(v)=2 q$
(ஈ) இவை ஏதுமில்லை
In a digraph,
(a) $\quad \Sigma d^{+}(v)=\Sigma d^{-}(v)=q$
(b) $\Sigma d^{+}(v)=2 q$
(c) $\quad \Sigma d^{-}(v)=2 q$
(d) None of these

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) ஓரின சார்பு புள்ளிகளின் படியை பாதுகாக்கும் என நிறுவுக.

Prove that isomorphism preserves the degree of vertices.

Or

Page 5 Code No. : 20580 B
(ஆ) ஒவ்வொரு வரைபும் வெட்டும் வரைபு என நிரூபி.

Prove that every graph is an intersection graph.
12. (அ) $P=(6,6,5,4,3,3,1)$ என்ற படித் தொடர் வரைபு தொடர் அல்ல என காட்டுக.

Show that the partition $P=(6,6,5,4,3,3,1)$ is not graphical.

Or
(ஆ) எந்த ஒரு $u-v$ நடையும் ஒரு $u-v$ பாதையைக் கொண்டிருக்கும் என நிரூபி.

Show that any $u-v$ walk contains a $u-v$ path.
13. (அ) வரைபு G-ன் ஒரு முனைப்புள்ளிக்கும் படி குறைந்த பட்சம் இரண்டு எனில் அந்த வரைபு ஒரு சுற்றை உள் அடக்கியிருக்கும் என காட்டுக.

If G is a graph in which the degree of every vertex is atleast two then show that G contains a cycle.

Or

Page 6 Code No. : 20580 B
(ஆ) ஒரு மரத்தில் எந்த இரு புள்ளிகளுக்கு இடையேயும் ஒரே ஒரு பாதை இருக்கும் என நிரூபி.
Prove that in a tree, between any two points there is a unique path.
14.
(அ) ஒவ்வொரு பன்முகத்திற்கும் குறைந்த பட்சம் இரண்டு முகங்கள் ஒரே எண்ணிக்கையிலான கோடுகளை எல்லையில் கொண்டிருக்கும் என நிரூபி.
Prove that every polyhedron has atleast two faces with the same number of edges on the boundary.

Or
(ஆ) ஆயிலாின் பன்முக சூத்திரத்தை கூறி நிறுவுக.
State and prove Euler's polyhedron formula.
15. (அ) வரையறு:
(i) திசை நடை
(ii) படி ஜோடி
(iii) திசை வரைபு.

Define :
(i) Directed walk
(ii) Degree pair
(iii) Digraph.

Or
Page 7 Code No. : 20580 B

```
(ஆ) \(\lambda^{4}-3 \lambda^{3}+3 \lambda^{2}\) என்பது எந்தவொரு வரரபிற்கும்
வண்ண பல்லுறுப்புக் கோவையாக இருக்க
```

முடியாது எனக் காட்டுக.

Show that $\lambda^{4}-3 \lambda^{3}+3 \lambda^{2}$ cannot be the chromatic polynomial of any graph.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) G_{1} ஒரு $\left(p_{1}, q_{1}\right)$ வரைபு மற்றும் G_{2} ஒரு $\left(p_{2}, q_{2}\right)$ வரைபு எனில் $G_{1}+G_{2}$ என்பது $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ வரைபு மற்றும்
$G_{1} \times G_{2}$ என்பது $\left(p_{1} p_{2}, q_{1} p_{2}+p_{2} q_{1}\right)$ வரைபு என நிரூப.

If G_{1} is a $\left(p_{1}, q_{1}\right)$ and G_{2} is a $\left(p_{2}, q_{2}\right)$ graph then prove that $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph and $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+p_{2} q_{1}\right)$ graph.

Or

(ஆ) p-புள்ளிகளையுடையதும் முக்கோணங்கள் இல்லாததுமான வரைபுகளில், மீப்பெரு கோடுகளின் எண்ணிக்கை $\left[\frac{p^{2}}{4}\right]$ என நிரூபி.

Page 8 Code No. : 20580 B

Prove that the maximum number of lines among all p-point graphs with no triangles is $\left[\frac{p^{2}}{4}\right]$.
17. (அ) ஓர் இரட்டைப்படை எண்ணை $p-1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{p}$ என்றிருக்குமாறு p பகுதிகளாகப் பிாித்த $P=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ எனும் பிரிப்பு ஒரு வரைபு பிாிப்பாக இருக்க தேவையானதும் போதுமான நிபந்தனை என்னவெனில்
$P^{1}=\left(d_{2}-1, d_{3}-1, \ldots . \begin{array}{c}d-1 \\ d_{1}+1\end{array}, \ldots, d_{p}\right) \quad$ எனும் பிரிப்பு வரைபு பிரிப்பாக இருக்கவேண்டும் என நிரூபி.

Prove that a partition $P=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ of even number into p parts with $p-1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{p}$ is graphical iff the modified partition $P^{1}=\left(d_{2}-1, d_{3}-1, \ldots \begin{array}{c}d-1 \\ d_{1}+1\end{array}, \ldots, d_{p}\right)$ is graphical.

Or

Page 9 Code No. : 20580 B
(ஆ) குறைந்த பட்சம் இரு புள்ளிகளையுடைய வரைபு G ஒரு இருகூறு வரைபாக இருக்க தேவையான மற்றும் போதுமான நிபந்தனை என்னவெனில் அதன் அளைத்து சுற்றுகளும் இரட்டைப்படை நீளத்தில் இருக்கும் என நிறுவுக.

Prove that a graph G with atleast two points is bipartite iff all its cycles are of even length.
18. (அ) பீட்டர்சன் வரைபு ஒரு ஹேமில்டோனியன் வரைபு அல்ல என நிறுவுக.

Show that the Petersen graph is non-hamiltonian.

[^0]Prove that the following statements are equivalent for a connected graph G.
(i) G is Eulerian.
(ii) Every point of G has even degree.
(iii) The set of edges of G can be partitioned into cycles.
19. (அ) (i) K_{5} மற்றும் $K_{3,3}$ ஆகிய வரைபுகள் தளவரைபுகள் அல்ல என நிறுவுக.
(ii) G ஒரு முக்கோணங்கள் இல்லாத தொடுத்த (p, q) தளவரைபு மற்றும் $p \geq 3$ எனில் $q \leq 2 p-4$ என நிரூபி.
(i) Prove that the graphs K_{5} and $K_{3,3}$ are not planar.
(ii) If G is a plane connected (p, q) graph without triangles and $p \geq 3$ then prove that $q \leq 2 p-4$.

$$
\begin{gathered}
\text { Or } \\
\text { (ஆ) } \chi^{\prime}\left(K_{n}\right)= \begin{cases}n ; & n \text { ஒரு ஒற்றைப்படை எண் }(n \neq 1) \\
n-1 ; & n \text { ஒரு இரட்றைப்படை எண் }\end{cases} \\
\text { என நிரூபி. } \\
\text { Prove that } \chi^{\prime}\left(K_{n}\right)=\left\{\begin{array}{ll}
n & \text { if } n \text { is odd }(n \neq 1) \\
n-1 \text { if } n \text { is even }
\end{array} .\right.
\end{gathered}
$$

20. (அ) $f(G, \lambda)$-ன் குணகங்களின் குறியீடு மாறி மாறி அமையும் என நிரூபி. மேலும் G ஒரு (p, q) வரைபு எனில் λ^{p-1}-ன் குணகம் $-q$ என நிரூபி.

Prove that the coefficients of $f(G, \lambda)$ are alternate in sign. Also prove that if G is a (p, q) graph then the coefficient of λ^{p-1} is $-q$.

Or
(ஆ) ஒரு வலுவற்ற திசை வரைபு D ஆயிலீாியன் திசைவரைபாக இருக்கத் தேவையானதும் போதுமானதுமான நிபந்தனை என்னவெனில் ஒவ்வொரு புள்ளியின் அகப்படியும் புறப்படியும் சமம் என நிறுவுக.

Prove that a weak diagraph D is Eulerian iff every point of D has equal in-degree and out-degree.

Page 12 Code No. : 20580 B

Code No. : 20580 E Sub. Code : SMMA 63

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core
GRAPH THEORY
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. In any group of more than one people, the number of people having the same number of friends inside the group is
(a) 39
(b) 2
(c) 4
(d) 5
2. For a graph with 6 points, the independence number is 2 . Then the covering number is
\qquad
(a) 4
(b) 2
(c) 6
(d) 3
3. Girth of C_{8} is
(a) 2
(b) 4
(c) 6
(d) 8
4. If G is a connected graph then $w(G)=$
\qquad .
(a) 0
(b) 2
(c) 1
(d) number of edges
5. Number of edges of a tree of order 10 is
(a) 10
(b) 11
(c) 9
(d) 5
6. Which theorem is stronger than Dirac's theorem?
(a) Cayley theorem
(b) Euler's theorem
(c) Hamilton's theorem
(d) Chvatal's theorem
7. In any connected plane (p, q) graph with r faces, the minimum number of edges is
(a) $\frac{3 r}{2}$
(b) $\frac{2 r}{3}$
(c) $3 p+6$
(d) $p-1$

Page 2 Code No. : 20580 E
8. The chromatic number of a tree T with atleast 2 points is
(a) 1
(b) 2
(c) 0
(d) 3
9. If G is a (p, q) graph and $f(G, \lambda)=\lambda^{r}+s \lambda^{r-1}+\ldots$. then r, s are respectively
(a) p, q
(b) q, p
(c) $q,-p$
(d) $p,-q$
10. In a digraph,
(a) $\Sigma d^{+}(v)=\Sigma d^{-}(v)=q$
(b) $\quad \Sigma d^{+}(v)=2 q$
(c) $\quad \Sigma d^{-}(v)=2 q$
(d) None of these

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that isomorphism preserves the degree of vertices.

Or

(b) Prove that every graph is an intersection graph.

Page 3 Code No. : 20580 E
12. (a) Show that the partition $P=(6,6,5,4,3,3,1)$ is not graphical.

Or

(b) Show that any $u-v$ walk contains a $u-v$ path.
13. (a) If G is a graph in which the degree of every vertex is atleast two then show that G contains a cycle.

Or

(b) Prove that in a tree, between any two points there is a unique path.
14. (a) Prove that every polyhedron has atleast two faces with the same number of edges on the boundary.
Or
(b) State and prove Euler's polyhedron formula.
15. (a) Define :
(i) Directed walk
(ii) Degree pair
(iii) Digraph.
.Or
(b) Show that $\lambda^{4}-3 \lambda^{3}+3 \lambda^{2}$ cannot be the chromatic polynomial of any graph.

Page 4 Code No. : 20580 E
[P.T.O.]

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If G_{1} is a $\left(p_{1}, q_{1}\right)$ and G_{2} is a $\left(p_{2}, q_{2}\right)$ graph then prove that $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph and $G_{1} \times G_{2}$ is $\mathrm{a}\left(p_{1} \cdot p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$

Or
(b) Prove that the maximum number of lines among all p-point graphs with no triangles is $\left[\frac{p^{2}}{4}\right]$.
17. (a) Prove that a partition $P=\left(d_{1}, d_{2}, \ldots, d_{p}\right)$ of even number into p parts with $p-1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{p}$ is graphical iff the modified partition $P^{1}=\left(d_{2}-1, d_{3}-1, \ldots \begin{array}{c}d-1 \\ d_{1}+1\end{array}, \ldots, d_{p}\right)$ is graphical.

Or
(b) Prove that a graph G with atleast two points is bipartite iff all its cycles are of even length.

Page 5 Code No. : 20580 E
18. (a) Show that the Petersen graph is non-hamiltonian.

Or

(b) Prove that the following statements are equivalent for a connected graph G.
(i) G is Eulerian.
(ii) Every point of G has even degree.
(iii) The set of edges of G can be partitioned into cycles.
19. (a) (i) Prove that the graphs K_{5} and $K_{3,3}$ are not planar.
(ii) If G is a plane connected (p, q) graph without triangles and $p \geq 3$ then prove that $q \leq 2 p-4$.

Or
(b) Prove that $\chi^{\prime}\left(K_{n}\right)=\left\{\begin{array}{ll}n & \text { if } n \text { is odd }(n \neq 1) \\ n-1 & \text { if } n \text { is even }\end{array}\right.$.
20. (a) Prove that the coefficients of $f(G, \lambda)$ are alternate in sign. Also prove that if G is a (p, q) graph then the coefficient of λ^{p-1} is $-q$.
Or
(b) Prove that a weak diagraph D is Eulerian iff every point of D has equal in-degree and out-degree.

Page 7 Code No. : 20580 E

Reg. No. :

Code No. : 20581 B Sub. Code : SMMA 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core
DYNAMICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. ஓர் எறிபொருள் அடையும் மீப்பெரு உயரம்
(அ) $\frac{u^{2} \sin ^{2} \alpha}{2 g} \quad$ (ஆ) $\frac{u^{2} \cos ^{2} \alpha}{2 g}$
(இ) $\frac{u \sin ^{2} \alpha}{2 g}$
(ஈ) $\frac{2 u \sin \alpha}{g}$
Greatest height attained by a projectile is
(a) $\frac{u^{2} \sin ^{2} \alpha}{2 g}$
(b) $\frac{u^{2} \cos ^{2} \alpha}{2 g}$
(c) $\frac{u \sin ^{2} \alpha}{2 g}$
(d) $\frac{2 u \sin \alpha}{g}$
2. 45° கோணத்தில், $80 \sqrt{2}$ அடி/வினாடி வேகத்தில் எறியப்பட்ட ஒரு பொருள் பறப்பதற்கு எடுத்துக்கொள்ளும் நேரம்
(அ) 2 வினாடி (ஆ) 5 வினாடி
(இ) 4 வினாடி (ஈ) 3 வினாடி
A particle is projected with velocity $80 \sqrt{2} \mathrm{ft} / \mathrm{sec}$ at an elevation of 45° then the time of flight is
(a) 2 sec
(b) 5 sec
(c) 4 sec
(d) 3 sec
3. உந்தம் என்பது ஒரு
(அ) மாறிலி
(ஆ) திசையிலி
(இ) வெக்டார்
(ஈ) இவை ஏதுமில்லை

Momentum is a \qquad .
(a) constant
(b) scalar
(c) vector
(d) none of the above
4. ஒரு முழு மீட்சித்தன்மையுள்ள கோளம் ஒரு வழவழப்பான நிலை தளத்தின் மீது சாய்வாக மோதும் போது அதன் பிரதிபலிப்பு கோணம் = \qquad .
(அ) $90^{\circ} \quad$ (ஆ) 45°
(இ) 0°
(ஈ) படுகோணம்
Page 2 Code No. : 20581 B

When a perfectly elastic sphere impinges on a fixed smooth plane, the angle of reflection $=$
\qquad _.
(a) 90°
(b) 45°
(c) 0°
(d) angle of incidence
5. ஒரு சீாிசை இயக்கத்தின் மீப்பெரு திசைவேகம் 1 மீ/வினாடி, அதன் இயக்க காலம் வினாடியில் $\frac{1}{5}$ மடங்கு எனில் அதன் வீச்சு
(அ) $\frac{1}{10}$ மீ (ஆ) 10π மீ
(இ) $\frac{\pi}{10}$ மீ (ஈ) $\frac{1}{10 \pi}$ மீ
The maximum velocity of a particle executing SHM is $1 \mathrm{~m} / \mathrm{sec}$ and its period is $\frac{1}{5}$ of the second. The amplitude is
(a) $\frac{1}{10} \mathrm{~m}$
(b) $10 \pi \mathrm{~m}$
(c) $\frac{\pi}{10} \mathrm{~m}$
(d) $\frac{1}{10 \pi} \mathrm{~m}$
6. $x=a \cos w t+b \sin w t$ எனில் சீரிசை இயக்கத்தின் மாறிலி μ-ன் மதிப்பு
(அ) w
(ஆ) $-w$
(இ) w^{2}

$$
\text { (※) }-w^{2}
$$

Page 3 Code No. : 20581 B

If $x=a \cos w t+b \sin w t$, then the constant μ of the SHM is
(a) w
(b) $-w$
(c) w^{2}
(d) $-w^{2}$
7. திசைவேகத்தின் ஆரக்கூறின் அளவு
(அ) \dot{r}
(ஆ) $r \dot{\theta}$
(இ) \ddot{r}
(ஈ) $r^{2} \dot{\theta}$
The magnitude of the radial component of velocity is
(a) \dot{r}
(b) $r \dot{\theta}$
(c) \ddot{r}
(d) $r^{2} \dot{\theta}$
8. ' a ' ஆரம் உடைய வட்டப்பாதையில் நகரும் பொருளுக்கு P என்ற புள்ளியில் தொடுகோட்டின் வழியே செல்லும் முடுக்கத்தின் கூறு \qquad -
(அ) $a \dot{\theta}^{2}$ (ஆ) $a \ddot{\theta}$
(இ) $a \dot{\theta}$
(ஈ) $a^{2} \dot{\theta}$

Page 4 Code No. : 20581 B

For a particle describing a circle of radius a, the acceleration at any point P has the component
\qquad along the tangent at P.
(a) $a \dot{\theta}^{2}$
(b) $a \ddot{\theta}$
(c) $a \dot{\theta}$
(d) $a^{2} \dot{\theta}$
9. சுருளின் (p, r) சமன்பாடு
(அ) $p=a r^{2}$
(ஆ) $p=r \cos \alpha$
(இ) $p=r \sin \alpha$
(ஈ) $p=r \tan \alpha$
(p, r) equation to the spiral is
(a) $p=a r^{2}$
(b) $p=r \cos \alpha$
(c) $p=r \sin \alpha$
(d) $p=r \tan \alpha$
10. ஒரு துகள் மைய பாதையில் நகர்ந்தால் $r^{2} \dot{\theta}=$
\qquad .
(அ) h
(ஆ) $\frac{h}{2}$
(இ) $2 h$
(ஈ) $-h$

If a particle moves in a central orbit then $r^{2} \dot{\theta}=$
\qquad .
(a) h
(b) $\frac{h}{2}$
(c) $2 h$
(d) $\quad-h$

Page 5 Code No. : 20581 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) ஒரு எறிபொருள் அடையும் பெரும உயரமானது, எறிபுள்ளியின் வழியாக செல்லும் கிடைத்தளத்தின் மீதுள்ள வீச்சின் கால்பகுதி எனில் எறிகோணத்தைக் காண்க.
If the greatest height attained by the particle is a quarter of its range on the horizontal plane through the point of projection then find the angle of projection.

Or

(ஆ) கொடிக்கப்பட்ட எறிவேகத்தில் எறியப்பட்ட துகளின் சாய்தளத்தின் மீதுள்ள பெரும வீச்சினைக் காண்க.

Determine the maximum range on an inclined plane, given the magnitude of the velocity of projection of a particle.
12. (அ) 8 கிலோகிராம் நிறறயுடைய பந்து ஒன்று வினாடிக்கு 10 மீட்டர் வேகத்துடன் இயங்கிக் கொண்டு அதே திசையில் வினாடிக்கு 2 மீட்டர் வேகத்துடன் இயங்கும். 24 கிலோகிராம் நிறறயுள்ள பந்து ஒன்றுடன் நேரடியாக மோதுகிறது. $e=\frac{1}{2}$ எனில் மோதிய பன் உள்ள வேகங்களைக் காண்க. மேலும் இயக்க ஆற்றலில் ஏற்படும் இழப்பையும் காண்க.

A ball of mass 8 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{sec}$ impinges directly on another ball of mass 24 kg moving at $2 \mathrm{~m} / \mathrm{sec}$, in the same direction. If $e=\frac{1}{2}$ then find the velocities after impact. Also calculate the loss in kinetic energy.

Or
(ஆ) ' m ' நிறையுள்ள ஒரு வழவழப்பான கோளம் ஓய்விலிருக்கும் ' M ' நிறையுள்ள வழவழப்பான மற்றொரு கோளத்தின் மீது சாய்வாக மோதுகிறது. $m=e M$ எனில் மோதலுக்குப் பின் இயக்க திசைகள் செங்குத்தாக இருக்கின்றன என்று நிரூபி. (e என்பது மீள்சக்தி கெழு)
A smooth sphere of mass ' m ' impinges obliquely on a smooth sphere of mass ' M ' which is at rest. Show that if $m=e M$, the directions of motion after impact are at right angles. (e is the coefficient of restitution)
13. (அ) ஒரு துகள் ஒரு வட்டப் பாிதியில் சீரான வேகத்துடன் நகர்கிறது. நிலலயான ஒரு விட்டத்தில், அதன் வீழ்ச்சி ஒரு சாமானிய சீாிசை இயக்கம் என நிறுவுக.

A particle moves along a circle with uniform speed. Show that the motion of its projection on a fixed diameter is simple harmonic.

Or

Page 7 Code No. : 20581 B
(ஆ) சாமானிய சீரிசை இயக்கத்தில் இயங்கிக்
கொண்டிருக்கும் ஒரு துகள் ' α ' என்ற வீச்சையும் ‘ T ' என்ற அளவு நேரத்தையும் கொண்டுள்ளது. அதன் சராசாி தொலலவிலிருந்து அதன் தொலைவு ' x ' ஆக இருக்கும் போது அதன் திசைவேகம் ' v ' என்பது $v^{2} T^{2}=4 \pi^{2}\left(a^{2}-x^{2}\right)$ எனும் சமன்பாட்டால் பெறப்படிகிறது என நிரூபி.

A body moving with SHM has an amplitude ' a ' and period ' T. Show that the velocity ' v ' at a distance ' x ' from the mean position is given by $v^{2} T^{2}=4 \pi^{2}\left(a^{2}-x^{2}\right)$.
14. (அ) ஆரைத் திசசயிலும் அதன் குறுக்குத் திசையிலும் ஒரு துகளின் முடுக்கத்தின் கூறுகளைத் தருவி.

Derive the radial and transverse components of acceleration of a particle.

Or
(ஆ) ஒரு புள்ளியின் ஆரைத் திசைவேகம் அதன் குறுக்குத் திசைவேகத்றைப் போல் k மடங்கு எனில் அப்புள்ளியின் பாதை ஒரு சமகோணச் சுருள் என நிறுவுக.

If a point moves so that its radial velocity is k times its transverse velocity then show that its path is an equiangular spiral.

Page 8 Code No. : 20581 B
15. (அ) ஒரு மைய பாதையில், பரப்புத் திசைவேகம் $\frac{1}{2} p v$ என நிறுவுக.

Prove that, in a central orbit, the areal velocity is $\frac{1}{2} p v$.

Or
(ஆ) ஒரு துகளானது முனைவை நோக்கி ஒரு மைய விசையினாால் இயக்கப்பட்டு $r^{2}=a^{2} \cos 2 \theta$ என்ற பாதையை அமைக்கிறது. விசையின் விதியைக் காண்க.

Find the law of force towards the pole under which the particle describes the curve $r^{2}=a^{2} \cos 2 \theta$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) ஆரம்ப திசைவேகம் ' v '-யுடன் எறியப்பட்ட துகள் ஒன்று எறிபுள்ளியிலிருந்து ' α ' தொலைவிலுள்ள ஒரு செங்குத்துச் சுவரில் அடையக்கூடிய மீப்பெரு உயரம் $\frac{v^{2}}{2 g}-\frac{g a^{2}}{2 v^{2}}$ எனக் காட்டுக.

Page 9 Code No. : 20581 B

Show that the greatest height which a particle with initial velocity ' v ' can reach on a vertical wall at a distance ' a ' from the point of projection is $\frac{v^{2}}{2 g}-\frac{g a^{2}}{2 v^{2}}$.

Or
(ஆ) ஒரு எறிபொருளின் பாதையின் உச்சியிலும், ஏதேனு் ஒரு குவியநாணின் நுனிகளிலும் அப்பொருளின் திசைவேகங்கள் முறேயை u, v_{1}, v_{2} எனில் $v_{1}^{-2}+v_{2}^{-2}=u^{-2}$ நிரூபி.

If v_{1} and v_{2} be the velocities of a projectile at the ends of a focal chord of its path and u is the velocity at the vertex, prove that $v_{1}^{-2}+v_{2}^{-2}=u^{-2}$.
17. (அ) இரண்டு சம அளவு பந்துகள் ஒரு வழவழப்பான மேசையில் ஒன்றையொன்று தொட்டுக் கொண்டிருக்கின்றன. அவற்றின் பொது தொடுகோடு வழியாக அதே அளவுள்ள மூன்றாவது பந்து, இரண்டின் மீதும் ஒரே நேரத்தில் மோதுகின்றது. e என்பது மீள்சக்திக்கெழு எனில் மோதலுக்குப் பன் $\frac{3}{5}\left(1-e^{2}\right) \quad$ மடங்கு இயக்க ஆற்றலை இழந்திருக்கும் என நிறுவுக.

Page 10 Code No. : 20581 B

Two equal balls are in contact on a smooth table and a third equal ball moving along their common tangent strikes them simultaneously. Prove that $\frac{3}{5}\left(1-e^{2}\right)$ of its kinetic energy is lost by impact, e being the coefficient of restitution for each pair of balls.

Or
(ஆ) ‘ h ' உயரத்திலிருந்து கிடைத்தளத்தின் மேல் மீள்
இயல்புடைய ' m ' நிறை பந்து ஒன்று விழுந்து எழும்புகிறது. மோதுகையில் இயக்க ஆற்றல் அழிவு $m g h\left(1-e^{2}\right)$ எனக் காட்டு. மேலும் எழும்புவதை நிறுத்தும் வரை எலுத்த காலம் $\sqrt{\frac{2 h}{g}} \cdot\left(\frac{1+e}{1-e}\right)$ எனக் காட்டி.

An elastic ball of mass ' m ' falls from a height ' h ' on a fixed plane and rebounds. Show that the loss of kinetic energy of impact is $m g h\left(1-e^{2}\right)$. Show also that the time taken before the particle has finished rebounding is $\sqrt{\frac{2 h}{g}} \cdot\left(\frac{1+e}{1-e}\right)$.
18. (அ) ஒரு துகள் சாமானிய சீாிசை இயக்கத்தில் இயங்கிக் கொண்டிருக்கிறது. தொடர்ந்து வரும் மூன்று கால இடைவெளிகளில் அலைவு மையத்திலிருந்து அதன் தூரங்கள் x_{1}, x_{2}, x_{3} ஆகும். அலைவு காலம் $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$
நிரூபி.
A particle is moving with SHM has distances x_{1}, x_{2}, x_{3} in ' 3 ' successive intervals of time from its center of oscillation. Show that its period is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.

Or
(ஆ) ஒன்றுக்கொன்று செங்குத்தான ஒரே அலைவு நேரத்தைக் கொண்ட இரண்டு சாமானிய சீாிசை இயக்கங்களின் தொகுப்பைக் காண்க.

Find the composition of two SHM of the same period in two perpendicular directions.
19. (அ) ஒரு துகள் ' v ' எனும் சீரான வேகத்துடன் $r=a(1+\cos \theta)$ எனும் வளைவரையில் நகர்கிறது. துருவத்தைப் பொறுத்து அதன் கோண வேகம் $\frac{v \sec \frac{\theta}{2}}{2 a}$ எனவும் ஆரைவழி முடுக்கக்கூறு $\frac{-3 v^{2}}{4 a}$ எனும் மாறிலி எனவும் நிறுவுக.

Page 12 Code No. : 20581 B

A particle moves with a uniform speed ' v ' along the curve $r=a(1+\cos \theta)$. Show that its angular velocity about the pole is $\frac{v \sec \frac{\theta}{2}}{2 a}$ and the radial component of its acceleration is the constant $\frac{-3 v^{2}}{4 a}$.

Or
(ஆ) நிலை ஆதியைப் பொறுத்து நகரும் பொருளின் ஆரத்திசை மற்றும் அதற்கு செங்குத்தான திசையில் வேகங்கள் $\lambda \gamma$ மற்றும் $\mu \theta$. இங்கு λ, μ என்பன மாறிலிகள் எனில் துகளின் பாதையின் சமன்பாடு மேலும் ஆரத்திசை மற்றும் அதற்கு செங்குத்தான திகைகளில் அதன் முடுக்கங்களைக் காண்க.

The velocities of a particle along and perpendicular to the radius from a fixed origin are $\lambda \gamma$ and $\mu \theta$, where λ, μ are constants. Find the path and the accelerations along and perpendicular to the radius vector.

Page 13 Code No. : 20581 B
20. (அ) ஒரு துகள் நீள்வட்டம் பாதையில் குலியத்தை நோக்கிய விசையில் நகர்கிறது. அவ்விசையின் விதியைக் காண்க. மேலும் பாதையின் ஏதாவது ஒரு புள்ளியில் அதன் திசைவேகத்றையும் அலலவு நேரத்ததயும் காண்க.

A particle moves in an ellipse under a force which is always directed towards its focus. Find the law of force, the velocity at any point of the path and its periodic time.

Or

$$
\begin{array}{lll}
\text { (ஆ) } p \text { என்பது துருவத்திலிருந்து } & \text { தொடுகோட்டிற்கு } \\
\text { வரரயப்படும் செங்குத்து } & \text { தூரம் எனில் } \\
\frac{1}{p^{2}}=u^{2}+\left(\frac{d u}{d \theta}\right)^{2} \text { என நிறுவுக. } &
\end{array}
$$

If p is the perpendicular from the pole on the tangent then prove that $\frac{1}{p^{2}}=u^{2}+\left(\frac{d u}{d \theta}\right)^{2}$.
(8 pages)
Reg. No. :

Code No. : 20581 E Sub. Code : SMMA 64

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core
DYNAMICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. Greatest height attained by a projectile is
(a) $\frac{u^{2} \sin ^{2} \alpha}{2 g}$
(b) $\frac{u^{2} \cos ^{2} \alpha}{2 g}$
(c) $\frac{u \sin ^{2} \alpha}{2 g}$
(d) $\frac{2 u \sin \alpha}{g}$
2. A particle is projected with velocity $80 \sqrt{2} \mathrm{ft} / \mathrm{sec}$ at an elevation of 45° then the time ofp flight is
(a) 2 sec
(b) 5 sec
(c) 4 sec
(d) 3 sec
3. Momentum is a \qquad .
(a) constant
(b) scalar
(c) vector
(d) none of the above
4. When a perfectly elastic sphere impinges on a fixed smooth plane, the angle of reflection $=$
\qquad
(a) 90°
(b) 45°
(c) 0°
(d) angle of incidence
5. The maximum velocity of a particle executing SHM is $1 \mathrm{~m} / \mathrm{sec}$ and its period is $\frac{1}{5}$ of the second. The amplitude is
(a) $\frac{1}{10} \mathrm{~m}$
(b) $10 \pi m$
(c) $\frac{\pi}{10} m$
(d) $\frac{1}{10 \pi} m$
6. If $x=a \cos w t+b \sin w t$, then the constant μ of the SHM is
(a) w
(b) $-w$
(c) w^{2}
(d) $-w^{2}$

Page 2 Code No. : 20581 E
7. The magnitude of the radial component of velocity is
(a) \dot{r}
(b) $r \dot{\theta}$
(c) \ddot{r}
(d) $r^{2} \dot{\theta}$
8. For a particle describing a circle of radius a, the acceleration at any point P has the component
\qquad along the tangent at P.
(a) $\alpha \dot{\theta}^{2}$
(b) $a \ddot{\theta}$
(c) $a \dot{\theta}$
(d) $a^{2} \dot{\theta}$
9. (p, r) equation to the spiral is
(a) $p=a r^{2}$
(b) $p=r \cos \alpha$
(c) $p=r \sin \alpha$
(d) $p=r \tan \alpha$
10. If a particle moves in a central orbit then $r^{2} \dot{\theta}=$
\qquad
(a) h
(b) $\frac{h}{2}$
(c) $2 h$
(d) $-h$

Page 3 Code No. : 20581 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If the greatest height attained by the particle is a quarter of its range on the horizontal plane through the point of projection then find the angle of projection.

Or
(b) Determine the maximum range on an inclined plane, given the magnitude of the velocity of projection of a particle.
12. (a) A ball of mass 8 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{sec}$ impinges directly on another ball of mass 24 kg moving at $2 \mathrm{~m} / \mathrm{sec}$, in the same direction. If $e=\frac{1}{2}$ then find the velocities after impact. Also calculate the loss in kinetic energy.

Or

(b) A smooth sphere of mass ' m ' impinges obliquely on a smooth sphere of mass ' M ' which is at rest. Show that if $m=e M$, the directions of motion after impact are at right angles. (e is the coefficient of restitution)

Page 4 Code No. : 20581 E
[P.T.O.]
13. (a) A particle moves along a circle with uniform speed. Show that the motion of its projection on a fixed diameter is simple harmonic.

Or
(b) A body moving with SHM has an amplitude ' a ' and period ' T. Show that the velocity ' v ' at a distance ' x ' from the mean position is given by $v^{2} T^{2}=4 \pi^{2}\left(a^{2}-x^{2}\right)$.
14. (a) Derive the radial and transverse components of acceleration of a particle.

Or

(b) If a point moves so that its radial velocity is k times its transverse velocity then show that its path is an equiangular spiral.
15. (a) Prove that, in a central orbit, the areal velocity is $\frac{1}{2} p v$.

Or
(b) Find the law of force towards the pole under which the particle describes the curve $r^{2}=\alpha^{2} \cos 2 \theta$.

Page 5 Code No. : 20581 E

$$
\text { PART C }-(5 \times 8=40 \mathrm{marks})
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Show that the greatest height which a particle with initial velocity ' v ' can reach on a vertical wall at a distance ' a ' from the point of projection is $\frac{v^{2}}{2 g}-\frac{g a^{2}}{2 v^{2}}$.

Or
(b) If v_{1} and v_{2} be the velocities of a projectile at the ends of a focal chord of its path and u is the velocity at the vertex, prove that $v_{1}^{-2}+v_{2}^{-2}=u^{-2}$.
17. (a) Two equal balls are in contact on a smooth table and a third equal ball moving along their common tangent strikes them simultaneously. Prove that $\frac{3}{5}\left(1-e^{2}\right)$ of its kinetic energy is lost by impact, e being the coefficient of restitution for each pair of balls.

Or

Page 6 Code No. : 20581 E
(b) An elastic ball of mass ' m ' falls from a height ' h ' on a fixed plane and rebounds. Show that the loss of kinetic energy of impact is $m g h\left(1-e^{2}\right)$. Show also that the time taken before the particle has finished rebounding is $\sqrt{\frac{2 h}{g}} \cdot\left(\frac{1+e}{1-e}\right)$.
18. (a) A particle is moving with SHM has distances x_{1}, x_{2}, x_{3} in ' 3 ' successive intervals of time from its center of oscillation. Show that its period is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.

Or
(b) Find the composition of two SHMs of the same period in two perpendicular directions.
19. (a) A particle moves with a uniform speed ' v ' along the curve $r=\alpha(1+\cos \theta)$. Show that its angular velocity about the pole is $\frac{v \sec \frac{\theta}{2}}{2 a}$ and the radial component of its acceleration is the constant $\frac{-3 v^{2}}{4 a}$.

Or
Page 7 Code No. : 20581 E
(b) The velocities of a particle along and perpendicular to the radius from a fixed origin are $\lambda \gamma$ and $\mu \theta$, where λ, μ are constants. Find the path and the accelerations along and perpendicular to the radius vector.
20. (a) A particle moves in an ellipse under a force which is always directed towards its focus. Find the law of force, the velocity at any point of the path and its periodic time.

Or
(b) If p is the perpendicular from the pole on the tangent then prove that $\frac{1}{p^{2}}=u^{2}+\left(\frac{d u}{d \theta}\right)^{2}$.

Reg. No. :

Code No. : 20582 B Sub. Code : SMMA 65

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core
NUMERICAL METHODS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. நியூட்டன்-ராப்சன் முறையில் $x_{n+1}=$ \qquad .
$\begin{array}{ll}\text { (அ) } x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} & \text { (ஆ) } x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\end{array}$
(இ) $x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)} \quad$ (ศ) $x_{n}+\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
In Newton-Raphson method $x_{n+1}=$ \qquad \ldots.
(a) $\quad x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
(b) $\quad x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
(c) $\quad x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
(d) $x_{n}+\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
2. $\quad a$ மற்றும் b க்கு இடையில் $f(x)=0$-ன் மூலம் இருக்க நிபந்தனை
(அ) $f(a)>0$ மற்றும் $f(b)>0$
(ஆ) $f(a)>0$ மற்றும் $f(b)<0$
(இ) $f(a)<0$ மற்றும் $f(b)<0$
(ஈ) இதில் எதுவுமில்லை
Condition for a root of $f(x)=0$ to lie between a and b is
(a) $\quad f(a)>0$ and $f(b)>0$
(b) $\quad f(a)>0$ and $f(b)<0$
(c) $\quad f(a)<0$ and $f(b)<0$
(d) none of the above
3. பின்வருவனவற்றுள் எது சாி?
(அ) $\Delta x^{r}=r h \cdot x^{r-1}$
(ஆ) $\quad \Delta x^{(r)}=r h \cdot x^{(r-1)}$
(இ) $\Delta^{n} e^{x}=e^{x}$
(ஈ) எதுவுமில்லை

Which of the following is true?
(a) $\Delta x^{r}=r h \cdot x^{r-1}$
(b) $\quad \Delta x^{(r)}=r h \cdot x^{(r-1)}$
(c) $\Delta^{n} e^{x}=e^{x}$
(d) none of the above

Page 2 Code No. : 20582 B
4. $\quad \nabla^{2} y_{2}=$ \qquad -.
(அ) $y_{2}+2 y_{1}+y_{0}$
(ஆ) $y_{2}-2 y_{1}+y_{0}$
(இ) $y_{2}-2 y_{1}-y_{0}$
(ஈ) y_{2}
$\nabla^{2} y_{2}=$ \qquad -.
(a) $y_{2}+2 y_{1}+y_{0}$
(b) $y_{2}-2 y_{1}+y_{0}$
(c) $y_{2}-2 y_{1}-y_{0}$
(d) y_{2}
5. சமனற்ற இடைவெளி உடைய புள்ளிகளுக்கு பயன்படுவது \qquad சூத்திரம்.
(அ) நியூட்டன் (ஆ) காஸ்
(இ) ஸ்டெர்லிங்
(ஈ) லக்ராஞ்சி
For unevenly spaced point we use \qquad formula.
(a) Newton
(b) Gauss
(c) Sterling
(d) Lagrange
6. நியூட்டனின் நேர்முக இடைக்கணிப்பு சூத்திரத்தைப் பயன்படுத்தி _ இருக்கும் y-மதிப்புகளை காணலாம்.
(அ) இறுதி அட்டவணை மதிப்புகள் அருகில்
(ஆ) நடு அட்டவணை மதிப்புகளில்
(இ) ஆரம்ப அட்டவணை மதிப்புகள் அருகில்
(ஈ) எதுவுமில்லை

Page 3 Code No. : 20582 B

Newton's forward interpolation formula is used to find the values of y
(a) near the end of the tabulated values
(b) in the middle of the tabulated values
(c) near the beginning of the tabulated values
(d) none
7. $\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\frac{\Delta y_{0}}{1}-\frac{\Delta^{2} y_{0}}{2}+\frac{\Delta^{3} y_{0}}{3}-\ldots.\right]$ என்பது
\qquad .
(அ) நியூட்டனின் நேர்முக வகைக்கெழு சூத்திரம்
(ஆ) பெஸல் சூத்திரம்
(இ) நியூட்டனின் பி்முக வகைக்கெழு சூத்திரம்
(ஈ) எதுவுமில்லை
$\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\frac{\Delta y_{0}}{1}-\frac{\Delta^{2} y_{0}}{2}+\frac{\Delta^{3} y_{0}}{3}-\ldots.\right] \quad$ is
(a) Newton's forward differentiation formula
(b) Bessel's formula
(c) Newton's backward differentiation formula
(d) None
8. டிராபிசாய்டல் விதியில் பிழயின் வரிசை
\qquad .
(அ) h
(ஆ) h^{2}
(இ) h^{3}
(ஈ) எதுவுமில்லை

The error in the Trapezoidal rule is of order
(a) h
(b) h^{2}
(c) h^{3}
(d) none
9. மாறிலியை நீக்கி வேறுபாட்டு சமன்பாட்டை உருவாக்குக $y_{n}=a 3^{n}$.
(அ) $y_{n+1}-y_{n}$ (ஆ) $y_{n+1}-2 y_{n}$
(இ) $y_{n+1}-3 y_{n}$
(ஈ) $y_{n+1}-4 y_{n}$

Form the difference equation by eliminating the constant from $y_{n}=a 3^{n}$
(a) $y_{n+1}-y_{n}$
(b) $y_{n+1}-2 y_{n}$
(c) $y_{n+1}-3 y_{n}$
(d) $y_{n+1}-4 y_{n}$
10. தீர்வு காண்க $y_{n+2}-8 y_{n+1}+15 y_{n}=0$.
(அ) $y_{n}=C_{1} 3^{x}+C_{2} 5^{x} \quad$ (ஆ) $y_{n}=C_{1} 7^{x}+C_{2} 8^{x}$
(இ) $y_{n}=C_{1} 2^{x}+C_{2} 4^{x}$ (ஈ) எதுவுமில்லை

Page 5 Code No. : 20582 B

Solve $y_{n+2}-8 y_{n+1}+15 y_{n}=0$
(a) $y_{n}=C_{1} 3^{x}+C_{2} 5^{x}$
(b) $\quad y_{n}=C_{1} 7^{x}+C_{2} 8^{x}$
(c) $y_{n}=C_{1} 2^{x}+C_{2} 4^{x}$
(d) None

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) நியூட்டன்-ராப்சன் முறையில் $x^{3}+3 x-1=0$ ன் மூலத்தை காண்க.

Find a root of $x^{3}+3 x-1=0$ by NewtonRaphson Method.

Or
(ஆ) காஸ் நீக்கல் முறையில் தீர்க்க :
$x+y=2,2 x+3 y=5$
Solve by Gauss elimination method :
$x+y=2,2 x+3 y=5$.
12. (அ) நிறுவுக : $\Delta^{n} e^{x}=\left(e^{h-1}\right)^{n} e^{x}$.

Prove that $\Delta^{n} e^{x}=\left(e^{h-1}\right)^{n} e^{x}$.
Or
(ஆ) நிறுவுக : $\Delta^{3} y_{2}=\nabla^{3} y_{5}$
Prove that $\Delta^{3} y_{2}=\nabla^{3} y_{5}$.

Page 6 Code No. : 20582 B
13. (அ) நியூட்டனின் நேர்முக சூத்திரத்தை பயன்படுத்தி $x=5$ ல் y-ன் மதிப்பு காண்க.

$x:$	4	6	8	10
$y:$	1	3	8	16

Find y when $x=5$ by using Newton's forward interpolation formula.

$x:$	4	6	8	10
$y:$	1	3	8	16

(ஆ) லக்ராஜ்சியின் முறையில் $x=6$ ல் y-ன் மதிப்பு காண்க.

$x:$		3	7	9
$y:$		168	120	72
		63		

Find y when $x=6$ by Lagrange's Method.

$x:$		3	7	9
$y:$		168	120	72

14. (அ) $\frac{d y}{d x}$-ன் மதிப்பை $x=51$ ல் காண்க.

$x:$	50	60	70	80	90
$y:$	19.96	36.65	58.81	77.21	94.61

Page 7 Code No. : 20582 B

Find $\frac{d y}{d x}$ at $x=51$.

$x:$	50	60	70	80	90
$y:$	19.96	36.65	58.81	77.21	94.61
			Or		

(ஆ) $h=0.2$ என கொண்டு டிராப்பிசாய்டல் விதிப்படி
$\int_{0}^{1} \frac{d x}{1+x^{2}}$ மதிப்பப காண்க.
Taking $h=0.2$, find $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Trapezoidal rule.
15. (அ) தீர்வு காண்க : $y_{n+2}-3 y_{n+1}+2 y_{n}=5^{n}$.

Solve $y_{n+2}-3 y_{n+1}+2 y_{n}=5^{n}$.

Or
(ஆ) தீர்வு காண்க : $y_{n+2}-5 y_{n+1}+6 y_{n}=6^{n}$.
Solve $y_{n+2}-5 y_{n+1}+6 y_{n}=6^{n}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16.

| (அ) $x \log _{10} x-1.2=0$ ன் $\quad 2$ | மற்றும் | 3க்கு |
| :--- | :--- | ---: | ---: |
| இடையிலான மூலத்தை | தவறான | நிலை |
| முறைப்படி காண்க. | | |

Find the root of $x \log _{10} x-1.2=0$ which lies between 2 and 3 by false position method.

Or
(ஆ) காஸ்-சீடல் முறையில் தீர்க்க :
$10 x+2 y+z=9$
$x+10 y-z=-22$
$-2 x+3 y+10 z=22$
Solve by Gauss-Seidel method.
$10 x+2 y+z=9$
$x+10 y-z=-22$
$-2 x+3 y+10 z=22$
17. (அ) கீழ்கண்டவற்றை நிறுவுக :
(i) $\quad \Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{\delta^{2}}{4}}$.
(ii) $\mu \delta=\frac{1}{2} \Delta+\frac{1}{2} \Delta E^{-1}$.

Page 9 Code No. : 20582 B

Prove the following :
(i) $\quad \Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{\delta^{2}}{4}}$.
(ii) $\mu \delta=\frac{1}{2} \Delta+\frac{1}{2} \Delta E^{-1}$.

Or
(ஆ) நிறுவுக :

$$
\Delta\left(5 x^{4}+6 x^{3}+x^{2}-x+7\right)=20 x^{(3)}+108 x^{(2)}+108 x^{(1)}+11
$$

Prove :

$$
\Delta\left(5 x^{4}+6 x^{3}+x^{2}-x+7\right)=20 x^{(3)}+108 x^{(2)}+108 x^{(1)}+11
$$

18. (அ) $x=84$ எனில் y-ன் மதிப்பு காண்க.

$x:$	40	50	60	70	80	90
$y:$	184	204	226	250	276	304

Find y when $x=84$.

$x:$	40	50	60	70	80	90
$y:$	184	204	226	250	276	304
Or						

(ஆ) நியூட்டனின் வகுத்த வேறுபாட்டு சூத்திரத்தை பயன்படுத்தி $f(8)$ ன் மதிப்பு காண்க.

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

Page 10 Code No. : 20582 B

Find $f(8)$ by using Newton's divided difference formula.

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

19. (அ) $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$-ன் மதிப்பை $x=550$ ல் காண்க.
x: $\begin{array}{llllll}500 & 510 & 520 & 530 & 540 & 550\end{array}$
$\begin{array}{lllllll}y: & 6.2146 & 6.2344 & 6.2538 & 6.2729 & 6.2916 & 6.3099\end{array}$
Find $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ when $x=550$.
$\begin{array}{ccccccc}x: & 500 & 510 & 520 & 530 & 540 & 550 \\ y: & 6.2146 & 6.2344 & 6.2538 & 6.2729 & 6.2916 & 6.3099\end{array}$
Or
(ஆ) மதிப்பிடுக $\int_{0}^{1} \frac{d x}{1+x}$ (i) சிம்சன் $\frac{1}{3}$ விதி (ii) சிம்சன் $\frac{3}{8}$ விதி இங்கு $h=\frac{1}{6}$ என எடுத்துக் கொள்ளவும். Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using (i) Simpson's $\frac{1}{3}$ rule (ii) Simpson's $\frac{3}{8}$ rule, taking $h=\frac{1}{6}$ for all cases.

Page 11 Code No. : 20582 B
20. (அ) தீர்வு காண்க : $4 y_{n+2}-4 y_{n+1}+y_{n}=2^{n}+2^{-n}$.

Solve : $4 y_{n+2}-4 y_{n+1}+y_{n}=2^{n}+2^{-n}$.
Or
(ஆ) தீர்வு காண்க : $y_{n+2}-8 y_{n+1}+16 y_{n}=4^{n}$.
Solve: $y_{n+2}-8 y_{n+1}+16 y_{n}=4^{n}$.

Page 12 Code No. : 20582 B

Code No. : 20582 E Sub. Code : SMMA 65

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics - Core

NUMERICAL METHODS

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. In Newton-Raphson method $x_{n+1}=$ \qquad \ldots
(a) $\quad x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
(b) $\quad x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
(c) $\quad x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
(d) $\quad x_{n}+\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
2. Condition for a root of $f(x)=0$ to lie between a and b is
(a) $\quad f(a)>0$ and $f(b)>0$
(b) $\quad f(a)>0$ and $f(b)<0$
(c) $\quad f(a)<0$ and $f(b)<0$
(d) none of the above
3. Which of the following is true?
(a) $\Delta x^{r}=r h \cdot x^{r-1}$
(b) $\quad \Delta x^{(r)}=r h \cdot x^{(r-1)}$
(c) $\Delta^{n} e^{x}=e^{x}$
(d) none of the above
4. $\nabla^{2} y_{2}=$ \qquad
(a) $y_{2}+2 y_{1}+y_{0}$
(b) $y_{2}-2 y_{1}+y_{0}$
(c) $y_{2}-2 y_{1}-y_{0}$
(d) y_{2}
5. For unevenly spaced point we use \qquad formula.
(a) Newton
(b) Gauss
(c) Sterling
(d) Lagrange

Page 2 Code No. : 20582 E
6. Newton's forward interpolation formula is used to find the values of y
(a) near the end of the tabulated values
(b) in the middle of the tabulated values
(c) near the beginning of the tabulated values
(d) none
7. $\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\frac{\Delta y_{0}}{1}-\frac{\Delta^{2} y_{0}}{2}+\frac{\Delta^{3} y_{0}}{3}-\ldots.\right]$ is
\qquad
(a) Newton's forward differentiation formula
(b) Bessel's formula
(c) Newton's backward differentiation formula
(d) None
8. The error in the Trapezoidal rule is of order
(a) h
(b) h^{2}
(c) h^{3}
(d) none
9. Form the difference equation by eliminating the constant from $y_{n}=a 3^{n}$
(a) $y_{n+1}-y_{n}$
(b) $y_{n+1}-2 y_{n}$
(c) $y_{n+1}-3 y_{n}$
(d) $y_{n+1}-4 y_{n}$

Page 3 Code No. : 20582 E
10. Solve $y_{n+2}-8 y_{n+1}+15 y_{n}=0$
(a) $y_{n}=C_{1} 3^{x}+C_{2} 5^{x}$
(b) $\quad y_{n}=C_{1} 7^{x}+C_{2} 8^{x}$
(c) $y_{n}=C_{1} 2^{x}+C_{2} 4^{x}$
(d) None

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Find a root of $x^{3}+3 x-1=0$ by Newton-Raphson Method.

Or

(b) Solve by Gauss elimination method :

$$
x+y=2,2 x+3 y=5 .
$$

12. (a) Prove that $\Delta^{n} e^{x}=\left(e^{h-1}\right)^{n} e^{x}$.

Or
(b) Prove that $\Delta^{3} y_{2}=\nabla^{3} y_{5}$.
13. (a) Find y when $x=5$ by using Newton's forward interpolation formula.

$x:$	4	6	8	10
$y:$	1	3	8	16

Page 4 Code No. : 20582 E
[P.T.O.]
(b) Find y when $x=6$ by Lagrange's Method.

$x:$		3	7	9
$y:$		168	120	72

14. (a) Find $\frac{d y}{d x}$ at $x=51$.

$x:$	50	60	70	80	90
$y:$	19.96	36.65	58.81	77.21	94.61

Or
(b) Taking $h=0.2$, find $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Trapezoidal rule.
15. (a) Solve $y_{n+2}-3 y_{n+1}+2 y_{n}=5^{n}$.

Or
(b) Solve $y_{n+2}-5 y_{n+1}+6 y_{n}=6^{n}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Find the root of $x \log _{10} x-1.2=0$ which lies between 2 and 3 by false position method.

Or
Page 5 Code No. : 20582 E
(b) Solve by Gauss-Seidel method.

$$
\begin{aligned}
& 10 x+2 y+z=9 \\
& x+10 y-z=-22 \\
& -2 x+3 y+10 z=22
\end{aligned}
$$

17. (a) Prove the following :
(i) $\quad \Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{\delta^{2}}{4}}$.
(ii) $\mu \delta=\frac{1}{2} \Delta+\frac{1}{2} \Delta E^{-1}$.

Or
(b) Prove :

$$
\Delta\left(5 x^{4}+6 x^{3}+x^{2}-x+7\right)=20 x^{(3)}+108 x^{(2)}+108 x^{(1)}+11
$$

18. (a) Find y when $x=84$.

$x:$	40	50	60	70	80	90
$y:$	184	204	226	250	276	304
Or						

(b) Find $f(8)$ by using Newton's divided difference formula.

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028
			Page 6	Code No. : 20582 E		

19. (a) Find $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ when $x=550$.
$x: 500 \quad 510 \quad 520 \quad 530 \quad 540 \quad 550$
$y: \begin{array}{llllll}6.2146 & 6.2344 & 6.2538 & 6.2729 & 6.2916 & 6.3099\end{array}$ Or
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using (i) Simpson's $\frac{1}{3}$ rule (ii) Simpson's $\frac{3}{8}$ rule, taking $h=\frac{1}{6}$ for all cases.
20. (a) Solve : $4 y_{n+2}-4 y_{n+1}+y_{n}=2^{n}+2^{-n}$.

Or
(b) Solve : $y_{n+2}-8 y_{n+1}+16 y_{n}=4^{n}$.

Page 7 Code No. : 20582 E

Reg. No. :

\qquad

Code No. : 20584 B Sub. Code : SEMA 5 B

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021

Fifth Semester
Mathematics
Major Elective — DISCRETE MATHEMATICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. $\quad P \wedge T=\square$.

(அ) T	(ஆ) F
(இ) P	(ஈ) $\neg P$
$P \wedge T=\square$.	

(a) T
(b) F
(c) P
(d) $\quad 7 P$
2. $\quad \neg(\neg P \vee\rceil Q)=$ \qquad
(அ) $P \vee Q \quad$ (ஆ) $\neg P \wedge\rceil Q$
(இ) $\neg P \vee\rceil Q$
(ஈ) $\quad P \wedge Q$
$\neg(\neg P \vee \neg Q)=\square$.
(a) $P \vee Q$
(b) $\quad \neg P \wedge \neg Q$
(c) $\quad P \vee \vee \square Q$
(d) $P \wedge Q$
3. $\quad R \vee(P \wedge\rceil P)$ என்பதற்கு சமான சூத்திரம் ——.

(அ) P	(ஆ) R
(இ) T	(ஈ) F

The equivalent formula for $R \vee(P \wedge \neg P)$ is
(a) P
(b) R
(c) T
(d) F
4. $\quad Q, P \rightarrow Q$ என்ற கூற்றுகளின் விளைவு ——.
(அ) P
(ஆ) Q
(இ) $\neg P$
(ஈ) T

The premises $\rceil Q, P \rightarrow Q$ implies \qquad
(a) P
(b) $\quad Q$
(c) $\quad \square P$
(d) T

Page 2 Code No. : 20584 B
5. ஒரு குலத்தில் $a * x=b$ என்ற சமன்பாட்டின் தீர்வு
\qquad
(அ) $b * a^{-1} \quad$ (ஆ) $\left(a * b^{-1}\right)$
(இ) $a^{-1} * b$
(ศ) $a^{-1} * b^{-1}$
For $a * x=b$, where G is a group, the solution of the equation of type $a * x=b$ \qquad
(a) $b * a^{-1}$
(b) $\left(a * b^{-1}\right)$
(c) $a^{-1} * b$
(d) $a^{-1} * b^{-1}$
6. ஹாமிங் தூரம் $H(x, y)+H(y, z)$ \qquad
(அ) $\geq H(x, z)$
(ஆ) $\leq H(x, z)$
(இ) $=H(x, z)$
(ஈ) $\neq H(x, z)$

The Hamming distance $H(x, y)+H(y, z)$
——.
(a) $\geq H(x, z)$
(b) $\leq H(x, z)$
(c) $=H(x, z)$
(d) $\neq H(x, z)$
7. $\quad a \leq b \Leftrightarrow a \oplus b=$
(அ) $a * b$
(ஆ) a
(இ) b^{\prime}
(ஈ) b
$a \leq b \Leftrightarrow a \oplus b=$ \qquad
(a) $a * b$
(b) a
(c) b^{\prime}
(d) b

Page 3 Code No. : 20584 B
8. $(a * b)^{\prime}=$

(அ) $a \oplus b$	(ஆ) $a^{\prime} * b^{\prime}$
(இ) $a * b^{\prime}$	(ஈ) $a^{\prime} \oplus b^{\prime}$

(a) $\quad a \oplus b$
(b) $a^{\prime} * b^{\prime}$
(c) $a * b^{\prime}$
(d) $a^{\prime} \oplus b^{\prime}$
9. $11101_{2}=\square$.

(அ) 39_{10}	(ஆ) 24_{10}
(இ) 33_{10}	(ஈ) 29_{10}

$11101_{2}=\square$.
(a) $\quad 39_{10}$
(b) $\quad 24_{10}$
(c) 33_{10}
(d) $\quad 29_{10}$
10. $693_{10}=\square$.
(அ) $1265_{8} \quad$ (ஆ) 1263_{8}
(இ) 1621_{8} (ஈ) 1256_{8} $693_{10}=\square$.
(a) 1265_{8}
(b) 1263_{8}
(c) 1621_{8}
(d) 1256_{8}

Page 4 Code No. : 20584 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) நிரூபி : $P \rightarrow Q \Leftrightarrow \neg P \vee Q$.

Prove : $P \rightarrow Q \Leftrightarrow \neg P \vee Q$.
Or
(ஆ) பன்வருபவை மெய்யா அல்ல முரணா எனக் காண்.
(i) $(7 Q \wedge P) \wedge Q$
(ii) $P \rightarrow(P \vee Q)$
(iii) $\quad(P \wedge Q) \longleftrightarrow P$.

Find whether the following are tautologies or contradictions.
(i) $(7 Q \wedge P) \wedge Q$
(ii) $P \rightarrow(P \vee Q)$
(iii) $(P \wedge Q) \longleftrightarrow P$.
12. (அ) பிரிவு நிலை இயல் வடிவம் காண் :
(i) $\quad P \wedge(P \rightarrow Q)$
(ii) $\quad 7(P \vee Q) \rightleftarrows P \wedge Q$.

Page 5 Code No. : 20584 B

Obtain disjunctive normal forms of :
(i) $P \wedge(P \rightarrow Q)$
(ii) $\quad 7(P \vee Q) \rightleftarrows P \wedge Q$.

Or
(ஆ) $P \rightarrow(Q \rightarrow S), \quad \quad \exists R \vee P, Q \quad$ என்ற கூற்றுகளிலிருந்து $\quad R \rightarrow S$ என்ற விளைவு பெறப்படிம் என நிறுவுக.
Show that $R \rightarrow S$ can be derived from the premises $P \rightarrow(Q \rightarrow S), \quad\rceil R \vee P$ and Q.
13. (அ) $\langle G, *\rangle$ ஒரு சுழற்சி குலம் ' a ' என்னும் உறுப்பு கொண்டு உருவாக்கப்படுகிறது. G-யின் வரிசை n எனில் $a^{n}=e$ என நிறுவுக. மேலும் $a^{n}=e$ என்னும் வடிவில் வரும் மீச்சிறு இயல் எண் n எனக் காட்டு.
Let $\langle G, *\rangle$ be a finite cyclic group generated by an element $a \in G$. If G is of order n, then show that $a^{n}=e$. Also prove that ' n ' is the least positive integer for which $a^{n}=e$.

Or
(ஆ) குலக்குறியீட்டின் பூஜ்யமற்ற குறியீட்டு
வார்த்றதகளின் மிகச்சிறிய எடை அதன் மிகச்சிறிய தூரத்திற்கு சமமாகும்.
Show that the minimum weight of the non-zero code words in a group code is equal to its minimum distance.

Page 6 Code No. : 20584 B
14. (அ) $\langle L, \leq\rangle$ ஓர் கூட்டமைப்பு மற்றும் $a, b, c \in L$ எனில் நிரூபி.
(i) $\quad a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)$
(ii) $\quad a *(b \oplus c) \geq(a * b) \oplus(a * c)$.

Let $\langle L, \leq\rangle$ be a lattice and $a, b, c \in L$, then prove that inequalities :
(i) $\quad a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)$
(ii) $\quad a *(b \oplus c) \geq(a * b) \oplus(a * c)$.

Or
(ஆ) பூலியன் வடிவங்களை பெருக்கல்களின் கூட்டல் நியமன வடிவில் எழுதுக.
(i) $x_{1} * x_{2}$
(ii) $\quad x_{1} \oplus x_{2}$.

Write the following Boolean expressions in a sum-of-products canonical form
(i) $x_{1} * x_{2}$
(ii) $x_{1} \oplus x_{2}$.
15. (அ) சம எண்களாக மாற்று.
(i) $(0.1011)_{2}$
(ii) $(0.24)_{18}$
(iii) $(2.7)_{8}$
(iv) $(37.12)_{16}$.

Page 7 Code No. : 20584 B

Convert to decimal numbers:
(i) $(0.1011)_{2}$
(ii) $\quad(0.24)_{18}$
(iii) $(2.7)_{8}$
(iv) $(37.12)_{16}$.

Or
(ஆ) மதிப்பு காண்.
(i) $1111_{2}+101_{2}$
(ii) $1001_{2}-100_{2}$
(iii) $10011111_{2}+1101011_{2}$.

Evaluate :
(i) $1111_{2}+101_{2}$
(ii) $1001_{2}-100_{2}$
(iii) $10011111_{2}+1101011_{2}$.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) $\quad(P \vee Q) \wedge\rceil(\neg P \wedge(7 Q \vee\rceil R)) \vee$ $(\neg P \wedge \neg Q) \vee(\neg P \wedge \neg R)$
ஒரு மெய் என நிரூபி.
Page 8 Code No. : 20584 B

Show that :
$(P \vee Q) \wedge\rceil(\neg P \wedge(7 Q \vee \neg R)) \vee$
$(\neg P \wedge\rceil Q) \vee(\neg P \wedge \neg R)$ is a tautology.
Or
(ஆ) நிறுவுக :
(i) $\quad \neg(P \wedge Q) \rightarrow(\neg P \vee(\neg P \vee Q)) \Leftrightarrow(\neg P \vee Q)$
(ii) $\quad(P \vee Q) \wedge(7 P \wedge(7 P \wedge Q)) \Leftrightarrow(7 P \wedge Q)$.

Show that:
(i) $\quad \neg(P \wedge Q) \rightarrow(\neg P \vee(\neg P \vee Q)) \Leftrightarrow(\neg P \vee Q)$
(ii) $\quad(P \vee Q) \wedge(7 P \wedge(7 P \wedge Q)) \Leftrightarrow(7 P \wedge Q)$.
17.
(அ) $(7 P \rightarrow R)_{\wedge}(Q \rightleftarrows \quad P)$ என்ற சூத்திரத்திற்கு முதன்மை இணைய இயல் வடிவம் பெறுக. மேலும் முதன்மை பிாிவு நிலை இயல் வடிவமும் காண்.

Obtain the principal conjunctive normal form of the formula S given by $(\neg P \rightarrow R) \wedge(Q \rightleftarrows P)$. Also obtain the principal disjunctive normal form of S.

Or

Page 9 Code No. : 20584 B
(ஆ) கூற்றுகள்
(i) $\quad(\exists x)(F(x) \wedge S(x)) \rightarrow y(M(y) \rightarrow W(y))$
(ii) $\quad(\exists y)(M(y) \wedge\rceil W(y)), \quad$ என்பதிலிருந்து $(x)(F(x) \rightarrow 7 S(x))$ விறைவு வரும் என நிரூபி.

Show that from :
(i) $\quad(\exists x)(F(x) \wedge S(x)) \rightarrow y(M(y) \rightarrow W(y))$
(ii) $\quad(\exists y)(M(y) \wedge\rceil W(y))$, the conclusion $(x)(F(x) \rightarrow\rceil S(x))$
18. (அ) லெக்ரான்ஜி தேற்றம் கூறி நிறுவுக.

State and prove Lagrange's theorem.

Or

(ஆ) ஒரு குறியீடு இரு குறியீட்டு வார்த்தைகளின் மீச்சிறு தூரம் குறைந்தது $2 k+1$ என இருந்தால் மட்டுமே k அல்லது அதற்கு குறைவான தவறுகளின் அளைத்து வித சேர்க்கையும் சாி செய்ய முடியும் எனக் காட்டு.

Show that a code can correct all combinations of k or fewer errors if and only if the minimum distance between any two code words is atleast $2 k+1$.

Page 10 Code No. : 20584 B
19. (அ) $\langle L, \leq\rangle$ ஒரு கூட்டமமப்பு என்க. அனைத்து
$a, b, c \in L$ நிரூபிக்க $b \leq c \Rightarrow\left\{\begin{array}{c}a * b \leq a * c \\ a \oplus b \leq a \oplus c\end{array}\right.$.
Let $\langle L, \leq\rangle$ be a lattice. For any $a, b, c \in L$,
prove that $b \leq c \Rightarrow\left\{\begin{aligned} a * b & \leq a * c \\ a \oplus b & \leq a \oplus c\end{aligned}\right.$.
Or
(ஆ) எந்த பூலியன் இயற்கணிதமும், ஏதேனும் ஒரு கணம் $\quad S$-ன் $\langle\rho(s), \cap, \cup, \sim, \varphi, S\rangle \quad$ என்ற இயற்கணிதத்திற்கு இயல் மாறா கோர்பு உடையது என நிரூபி.

Show that any Boolean algebra, is isomorphic to power set algebra $\langle\rho(s), \cap, \cup, \sim, \varphi, S\rangle$ for any set S.
20. (அ) பெருக்குக :
(i) $1111_{2} \times 1011_{2}$
(ii) $110_{2} \times 10_{2}$.

Multiply :
(i) $1111_{2} \times 1011_{2}$
(ii) $110_{2} \times 10_{2}$.

Or

Page 11 Code No. : 20584 B
(ஆ) வகுக்க :
(i) $100001_{2} \div 110_{2}$
(ii) $100000_{2} \div 100_{2}$.

Divide :
(i) 100001_{2} by 110_{2}
(ii) 100000_{2} by 100_{2}.

Page 12 Code No. : 20584 B

Reg. No. :

Code No. : 20585 E Sub. Code : SEMA 5 C

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fifth Semester

Mathematics
Major Elective - COMBINATORIAL MATHEMATICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. $n C_{0}=$ \qquad .
(a) 0
(b) 1
(c) n
(d) none
2. $P(5)=$ \qquad .
(a) 5
(b) 20
(c) 100
(d) 120
3. The number of different pairings of $2 n$ objects is
(a) $(2 n)$!
(b) $\frac{(2 n)!}{n!}$
(c) $\frac{(2 n)!}{(2!)^{n} n!}$
(d) $\frac{(2 n)!}{2!}$
4. The system of distinct representatives for the sets $A_{1}=\{1,2\}, A_{2}=\{4\}, A_{3}=\{1,3\}, A_{4}=\{2,3,4\}$ is
(a) $\{1,2,3,4\}$
(b) $\{1,4,3,2\}$
(c) $\{1,3,2,4\}$
(d) $\{1,3,4,2\}$
5. In a simple tree, the degree of each vertex is
(a) ≤ 3
(b) $=3$
(c) ≥ 3
(d) 1
6. The number of derangements of the 3 symbols $1,2,3$ is
(a) 1
(b) 2
(c) 3
(d) 4
7. How many ways are there of placing 5 non-taking rooks on a 5×5 chess board?
(a) 3 !
(b) 4 !
(c) 5 !
(d) 6 !

Page 2 Code No. : 20585 E
8. For any board $C, r_{1}(C)=$ \qquad .
(a) number of rows of C
(b) number of squares of C
(c) number of columns of C
(d) none
9. In a block diagram, the subsets of S are called
\qquad .
(a) blocks
(b) varieties
(c) elements
(d) none
10. In a block diagram each element lies in exactly
\qquad blocks?
(a) k
(b) λ
(c) r
(d) v

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) How many permutations are there of the 26 letters of the alphabet in which the five vowels are in consecutive places?

Or
(b) P.T. $\binom{n}{r}=\frac{n!}{r!(n-r)!}$.

Page 3 Code No. : 20585 E
12. (a) A pack of 52 cards is divided among 4 people so that each gets 13 cards. How many such deals are possible?

Or
(b) Define Latin square and give an example.
13. (a) If $a_{n}=5 a_{n-1}-6 a_{n-2} \forall n \geq 3$ and $a_{1}=a_{2}=1$, find a_{n}.

Or
(b) Let $b_{n}=\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\ldots$. Verify that $b_{1}=1, b_{2}=2$ and show that $b_{n}=b_{n-1}+b_{n-2}$ $\forall n \geq 3$.
14. (a) How many integers from 1 to 1000 are divisible by none of $3,7,11$?

Or
(b) Find the rook polynomial of the board.

Page 4 Code No. : 20585 E
15. (a) Show that there exist no (12, 8, 3, 2, 1) configuration.

Or
(b) Show that there are no integers a, b, c such that $a^{2}+b^{2}=6 c^{2}$ apart from $a=b=c=0$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$.

Or
(b) By using the identify $(1+x)^{2 n}=(1+x)^{n}(1+x)^{n}$ and considering the coefficient of x^{n} on both sides, prove that $\binom{2 n}{n}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\ldots+\binom{n}{n}^{2}$.
17. (a) Show that if a graph has $2 n$ vertices, each of degree $\geq n$, then the graph has a perfect matching.

Or
(b) State and prove marriage theorem.

Page 5 Code No. : 20585 E
18. (a) If a_{n} denote the number of derangement on $1,2,3, \ldots . n$, prove that
$a_{n}=(n-1)\left[a_{n-1}+a_{n-2}\right] \forall n \geq 3$ and $a_{1}=0$, $a_{2}=1$.

Or

(b) Solve the recurrence relation for the Fibonacci sequence.
19. (a) If A and B are non interfering parts of a chess board C, prove that $R(x, C)=R(x, A)+R(x, B)$.

Or
(b) In constructing a 6×6 Latin square the first two rows have been chosen as follows :

1	2	3	4	5	6
2	4	1	3	6	5

In how many ways can a third row be chosen?
20. (a) Prove that for a (b, v, r, k, λ) configuration, $b \geq v$.

Or
(b) Prove that there is no finite projective plane of order 6.

Page 6 Code No. : 20585 E

Reg. No. :

Code No. : 20586 B Sub. Code : SEMA 5 D

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fifth Semester
Mathematics
Major Elective - OPERATIONS RESEARCH - I
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. இரண்டு கட்டுப்பாடுகள் முதல் நேர்மறை கால்பகுதியில்

வெட்டிக் கொள்ளவில்லை எனில் \qquad .
(அ) ஏதாவதொரு கட்டுப்பாடு தேவையற்றது
(ஆ) சாத்தியமற்ற தீர்வாகும்
(இ) எல்லலயற்ற தீர்வு கிடைக்கும்
(ஈ) இவை எதுவும் இல்லை

If two constraints do not intersect in the positive quadrant of the graph, then \qquad _.
(a) one of the constraint is redundant
(b) the solution is infeasible
(c) the solution is unbounded
(d) none of these
2. பொிதாக்கப்பட்ட LPPuின் ஒரு அடிப்படை சாத்தியமான தீர்வு, ஒரு உகந்த தீர்வாக மாறுவதற்கு தேவையான மற்றும் போதுமான நிபந்தனை
\qquad . (எல்லா j-க்கும்)
(அ) $\quad z_{j}-c_{j} \geq 0$
(ஆ) $z_{j}-c_{j} \leq 0$
(இ) $z_{j}-c_{j}=0$
(ஈ) $z_{j}-c_{j}>0$ (or) $z_{j}-c_{j}<0$
A necessary and sufficient condition for a basic feasible solution to a maximization LPP to be an optimum is that (for all j) \qquad .
(a) $z_{j}-c_{j} \geq 0$
(b) $\quad z_{j}-c_{j} \leq 0$
(c) $z_{j}-c_{j}=0$
(d) $z_{j}-c_{j}>0$ (or) $z_{j}-c_{j}<0$

Page 2 Code No. : 20586 B
3. m-கட்டுப்பாடுகள் மற்றும் n-எதிர்மறை அல்லாத மாறிகளளக் கொண்ட ஒரு முதன்மை பெரிதாக்கப்பட்ட LPPயின் இரட்டை என்பது \qquad .
(அ) ஒரு சிறிதாக்கப்பட்ட LPP
(ஆ) n-கட்டுப்பாடுகள் மற்றும் m-எதிர்மறை அல்லாத மாறிகளைக் கொண்டது
(இ) தேர்வு (அ) மற்றும் (ஆ) இரண்டும்
(ஈ) இவை எவையும் இல்லை
The dual of the primal maximization LPP having m constraints and n-non-negatives variables should \qquad .
(a) be a minimization LPP
(b) have n-constraints and m non-negative variables
(c) both (a) and (b)
(d) none of the above
4. இரட்டைக்கு ஒரு எல்லையற்ற தீர்வு எனில், அதன் முதன்மைக்கு \qquad -.
(அ) ஒரு எல்லையற்ற தீர்வு
(ஆ) சாத்தியமில்லாத தீர்வு
(இ) சாத்தியமான தீர்வு
(ஈ) இவை எவையுமில்லை

Page 3 Code No. : 20586 B

If dual has an unbounded solution, then primal has \qquad _.
(a) an unbounded solution
(b) infeasible solution
(c) a feasible solution
(d) none of the above
5.

ஒரு இடமாற்றுதல் கணக்கு என்பது ___ இடமாற்றுதலை கையாள்கிறது.
(அ) ஒரு ஒற்றைப் பொருளை பல மூலங்களிலிருந்து ஒரு இலக்கிற்கு
(ஆ) பல பொருளை பல மூலங்களிலிருந்து பல இலக்கிற்கு
(இ) ஒரு ஒற்றைப் பொருளள பல மூலங்களிலிருந்து பல இலக்கிற்கு
(ஈ) ஒரு ஒற்றைப் பொருளள ஒரு மூலங்களிலிருந்து
The transportation problem deals with the transportation of \qquad .
(a) a single product from several sources to a destination
(b) a multi-product from several sources to several destinations
(c) a single product from several sources to several destinations
(d) a single product from a source to several destinations

Page 4 Code No. : 20586 B
6. m-மூலங்கள் மற்றும் n-இலங்குகள் கொண்ட ஒரு T.P.uின் தீர்வு சாத்தியமானது, அதன் ஒதுக்கீடுகளின் எண்ணிக்கை என்பது \qquad .
(அ) $m+n-1 \quad$ (ஆ) $m+n+1$
(இ) $m+n$
(ศ) $\quad m \times n$

The solution to a T.P. with m-sources and n-destinations is infeasible, if the number of allocations are \qquad .
(a) $m+n-1$
(b) $m+n+1$
(c) $m+n$
(d) $m \times n$
7. n-வேலையாட்கள் மற்றும் n வேலைகள் இருந்தால், இப்படியாக இருக்கும் சுசுசுசுசுசுசுசுசுசுசுசு.
(அ) n தீர்வுகள்
(ஆ) n ! தீர்வுகள்
(இ) $(\mathrm{n}-1)!$ தீர்வுகள்
(ஈ) $(n!)^{n}$ தீர்வுகள்

If there are n-workers and n-jobs, there would be
(a) n solutions
(b) $n!$ solutions
(c) ($\mathrm{n}-1$)! solutions
(d) $(n!)^{n}$ solutions
8. ஒரு ஓதுக்கீட்டு கணக்கு என்பது _ ஆக இருக்கமுடியும்.
(அ) T.P. போல வடிவமைப்பு மற்றும் தீர்வு
(ஆ) பெரிதாக்க முறை
(இ) நிரை மற்றும் நிரல்களின் எண்ணிக்கை சமமாக இருந்தால் மட்டுமே தீர்வு
(ஈ) மேற்கண்ட அளைத்தும்
An assignment problem can be \qquad .
(a) designed and solved as a transportation problem
(b) of maximization type
(c) solved only if number of rows equals the number of columns
(d) all of the above
9. n-வேலைகள் மற்றும் இரண்டு இயந்திரங்களில், (A மற்றும் B என்க) வாிசைமுறை கணக்குகள் இதில் செயலாக்க வரிசை என்பது AB ஆகும்.
(அ) இயந்திரம் Buில் குறைந்தபட்ச நேரம் கொண்ட வேலை முதலில் செயலாக்கப்படுகிறது
(ஆ) இயந்திரம் Auில் குறைந்தபட்ச நேரம் கொண்ட வேலை இறுதியில் செயலாக்கப்படுகிறது
(இ) இயந்திரம் Buில் குறைந்தபட்ச நேரம் கொண்ட வேலை இறுதியில் செயலாக்கப்படுகிறது
(ஈ) இயந்திரம் Buில் அதிகபட்ச நேரம் கொண்ட வேலை இறுதியில் செயலாக்கப்படுகிறது

Page 6 Code No. : 20586 B

In ' n ' jobs are two machines, say A and B , sequencing problems in which the order of processing is AB
(a) job having minimum time on machine B is processed first
(b) job having minimum time on machine A is processed in the last
(c) job having minimum time on machine B is processed in the last
(d) job having maximum time on machine B is processed in the last
10. n-இயந்திரங்களில் இரண்டு வேலைகளை செயலாக்குவது தொடர்பான வாிசை முறைக் கணக்குகள்
\qquad
(அ) வரைபட முறையில தீர்க்க முடியும்
(ஆ) வரைபட முறறயில தீர்க்க முடியாது
(இ) இரண்டு வேலைகளின் செயாலக்கம் கண்டிப்பாக ஒரே வாிசை கொண்ட நிபந்தனையாக இருக்கும்
(ஈ) மேற்கண்ட எதுவும் இல்லை
Sequencing problems involving processing of two jobs on ' n ' machines \qquad .
(a) can be solved graphically
(b) cannot be solved graphically
(c) have a condition that the processing of two jobs must be the same order
(d) none of the above

Page 7 Code No. : 20586 B

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) பின்வரும் LP-ஐ வரைபட முறைறை பயன்படுத்தி தீர்க்க :

சிறிதாக்கப்பட்ட $z=20 x_{1}+40 x_{2}$
கட்டுப்பாடுகளுக்கு உட்பட்ட

$$
3 x_{1}+6 x_{2} \geq 108
$$

$$
3 x_{1}+12 x_{2} \geq 36
$$

$$
20 x_{1}+10 x_{2} \geq 100
$$

$$
\text { மற்றும் } x_{1}, x_{2} \geq 0 \text {. }
$$

Solve the following linear problem by using graphical method :

Minimize $z=20 x_{1}+40 x_{2}$
Subject to the constraints :

$$
\begin{aligned}
& 3 x_{1}+6 x_{2} \geq 108 \\
& 3 x_{1}+12 x_{2} \geq 36 \\
& 20 x_{1}+10 x_{2} \geq 100 \\
& \text { and } x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

Or

Page 8 Code No. : 20586 B
(ஆ) கீழ்க்கண்ட LPP-ஐ வரைபட முறையில் தீர்க்க.
பொிதாக்கப்பட்ட $z=x_{1}+x_{2}$
கட்டுப்பாடுகளுக்கு உட்பட்ட

$$
\begin{aligned}
& x_{1}+x_{2} \leq 1 \\
& -3 x_{2}+x_{2} \geq 3 \\
& \quad x \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

Solve the following LPP by graphical method:

Maximize $z=x_{1}+x_{2}$
Subject to the constraints :

$$
\begin{aligned}
& x_{1}+x_{2} \leq 1 \\
& -3 x_{2}+x_{2} \geq 3 \\
& x \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

12. (அ) கீழ்க்கண்ட LPP-க்கான இரட்டையை எழுதுக.

சிறிதாக்கப்பட்ட $z=3 x_{1}-2 x_{2}+4 x_{3}$
கட்டுப்பாடுகளுக்கு உட்பட்ட :

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+4 x_{3} \geq 7 \\
& 6 x_{1}+x_{2}+3 x_{3} \geq 4 \\
& 7 x_{1}-2 x_{2}-x_{3} \leq 10 \\
& x_{1}-2 x_{2}+5 x_{3} \geq 3 \\
& 4 x_{1}+7 x_{2}-2 x_{3} \geq 2 \\
& x_{1} \geq 0, x_{x} \geq 0, x_{3} \geq 0 .
\end{aligned}
$$

Page 9 Code No. : 20586 B

Write the dual of the following LPP :
Minimize $z=3 x_{1}-2 x_{2}+4 x_{3}$
Subject to the constraints :

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+4 x_{3} \geq 7 \\
& 6 x_{1}+x_{2}+3 x_{3} \geq 4 \\
& 7 x_{1}-2 x_{2}-x_{3} \leq 10 \\
& x_{1}-2 x_{2}+5 x_{3} \geq 3 \\
& 4 x_{1}+7 x_{2}-2 x_{3} \geq 2 \\
& x_{1} \geq 0, x_{x} \geq 0, x_{3} \geq 0 .
\end{aligned}
$$

Or
(ஆ) கீழ்க்கண்ட LPP-ஐ இரட்டை சிம்பிளக்ஸ் முறையில் தீர்க்க.
சிறிதாக்கப்பட்ட $z=3 x_{1}+x_{2}$
கட்டுப்பாடுகளுக்கு உட்பட்ட :
$x_{1}+x_{2} \geq 1$
$2 x_{1}+3 x_{2} \geq 2$
$x_{1} \geq 0, x_{2} \geq 0$.
Use dual simplex method to solve the following LPP :
Minimize $z=3 x_{1}+x_{2}$
Subject to the constraints :

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& 2 x_{1}+3 x_{2} \geq 2 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

Page 10 Code No. : 20586 B
13. (அ) கீழ்க்கண்ட T.P.-யின் தொடக்க அடிப்படை சாத்திய தீர்வினை அணி சிறிதான முறையில் பெறுக.

	D_{1}	D_{2}	D_{3}	D_{4}	இருப்பு
O_{1}	1	2	3	4	6
O_{2}	4	3	2	0	8
O_{3}	0	2	2	1	10
தேவை	4	6	8	6	

Obtain an initial basic feasible solution to the following T.P. using the matrix minima method.

	D_{1}	D_{2}	D_{3}	D_{4}	Capacity
O_{1}	1	2	3	4	6
O_{2}	4	3	2	0	8
O_{3}	0	2	2	1	10
Demand	4	6	8	6	

> Or
> (ஆ) கீழ்க்கண்ட T.P.-யின் தொடக்க அடிப்படை சாத்திய தீர்வினை Vogel's தோராய முறையைப் பயன்படுத்தி காண்க.

Page 11 Code No. : 20586 B

Find an initial basic feasible solution to the following T.P. using Vogel's approximation method.
S_{1}
$\mathrm{~S}_{2}$
$\mathrm{~S}_{3}$
Demand
Decccc
D_{1}
D_{2} $\mathrm{D}_{3} \mathrm{D}_{4}$ Supply
14. (அ) கீழ்க்கண்ட இடஒதுக்கீட்டு கணக்கினை கவனத்தில் கொள்க.
வேலையாட்கள்
$\begin{array}{ccccc} & & \text { W } & \mathrm{X} & \mathrm{Y} \\ \text { வேலைகள் } \\ \mathrm{A} \\ \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{D}\end{array}\left(\begin{array}{ccc}8 & 7 & 9 \\ 70 \\ 7 & 9 & 9 \\ 10 & 8 & 7 \\ 10 & 6 & 8 \\ \hline\end{array}\right)$
செயலாக்க மொத்த செலவு குறைந்தபட்சமாக இருக்கும்படியான வேலலயாட்களின் வேலை ஒதுக்கீட்டைக் காண்க.

Consider the following assignment problem :
Workers

			W	X	Y
Jobs	A				
	A				
	B				
	C				
	D				

7 \& 9 \& 9

\hline\end{array}\right)\)
Find an allocation of jobs to the workers so that the total cost processing is minimum.
Or
(ஆ) கீழ்க்கண்ட ஒதுக்கீட்டு கணக்கினைத் தீர்க்க.

| |
| :--- | :---: | :---: | :---: | :---: |
| 1 |
| 2 |
| 2 |
| 3 |
| 4 |\(\left(\begin{array}{cccc}\mathrm{A} \& \mathrm{B} \& \mathrm{C} \& \mathrm{D}

10 \& 25 \& 15 \& 20

15 \& 30 \& 5 \& 15

35 \& 20 \& 12 \& 24

17 \& 25 \& 24 \& 20\end{array}\right)\)

Solve the following assignment problem :
$\left.\begin{array}{lcccc} \\ 1 \\ 2 \\ 2 \\ 3 \\ 4\end{array} \begin{array}{cccc}\mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\ 10 & 25 & 15 & 20 \\ 15 & 30 & 5 & 15 \\ 35 & 20 & 12 & 24 \\ 17 & 25 & 24 & 20\end{array}\right)$
15. (அ) கீழ்க்கண்ட தகவல்கள் இயந்திரங்களின் மீதான மொத்த செயலாக்க நேரம், மணிநேரங்களில் வழங்கப்படுகிறது, மற்றும் கடந்து செல்வது அனுமதியில்லை என்ற அடிப்படையில் இருக்கிறது எனில் குறைந்தபட்ச மொத்த நேரத்தைக் கொண்ட வேலைகளின் உகந்த வரிசையினைக் கண்டறிக.

வேமை :	A	B	C	D	E	F	G
இயந்திரம் $\mathrm{M}_{1}:$	3	8	7	4	9	8	7
இயந்திரம் $\mathrm{M}_{2}:$	4	3	2	5	1	4	3
இயந்திரம் $\mathrm{M}_{3}:$	6	7	5	11	5	6	12

Page 13 Code No. : 20586 B

Determine the optimal sequence of jobs that minimizes the total elapsed time based on the following information processing time on machines is given in hours and passing is not allowed :

Job :	A	B	C	D	E	F	G
Machine $\mathrm{M}_{1}:$	3	8	7	4	9	8	7
Machine $\mathrm{M}_{2}:$	4	3	2	5	1	4	3
Machine $\mathrm{M}_{3}:$	6	7	5	11	5	6	12

Or
(ஆ) வரைபட முறையை உபயோகித்து, காட்டப்பட்ட இயந்திரங்களில் பின்வரும் வேலைகளைச் செயலாக்குவதற்காக சேர்க்கப்பட்ட நேரத்தை குறைக்கவும், அதாவது ஒவ்வொரு இயந்திரமும் முதலில் செய்ய வேண்டிய வேலையைக் கண்டறியவும். மேலும், இரண்டு வேலைகளளயும் முழுவதுமாக செய்து முடிக்க தேவைப்படிம் மொத்த நேரத்தினையும் கணக்கிடிக.

வேலை $1\left\{\begin{array}{l}\text { வாிசை : } \\ \text { நேரம் : }\end{array}\right.$
வேலை 2 வாிசை:
நேரம் :

A	B	C	D	E
3	4	2	6	2
B	C	A	D	E
5	4	3	2	6

Page 14 Code No. : 20586 B

Use graphical method to minimize the time added to process the following jobs on the machines shown, (ie) for each machine find the job which should be done first. Also calculate the total time elapsed to complete both the jobs :
Job 1 $\left\{\begin{array}{l}\text { Sequence: } \\ \text { Time: }\end{array}\right.$
$\left\{\begin{array}{l}\text { Sequence : } \\ \text { Time: }\end{array}\right.$

A	B	C	D	E
3	4	2	6	2
B	C	A	D	E
5	4	3	2	6

PART C - ($5 \times 8=40 \mathrm{marks}$)
Answer ALL questions, choosing either (a) or (b).
16. (அ) Simplex முறையைப் பயன்படுத்தி கீழ்க்கண்ட LPP-யைத் தீர்க்க :
பொிதாக்கப்பட்ட $z=4 x_{1}+10 x_{2}$ கட்டுப்பாடுகளுக்குட்பட்டது : $2 x_{1}+x_{2} \leq 50$
$2 x_{1}+5 x_{2} \leq 100$
$2 x_{1}+3 x_{2} \leq 9$
$x_{1}, x_{2} \geq 0$.
Use Simplex method to solve the following LPP :
Maximize $z=4 x_{1}+10 x_{2}$
Subject to the constraints :
$2 x_{1}+x_{2} \leq 50$
$2 x_{1}+5 x_{2} \leq 100$
$2 x_{1}+3 x_{2} \leq 9$
$x_{1}, x_{2} \geq 0$
Or
Page 15 Code No. : 20586 B
(ஆ) Big-M முறையைப் பயன்படுத்தி,
பெரிதாக்கப்பட்ட $z=3 x_{1}+2 x_{2}$
கட்டுப்பாடுகளுக்குட்பட்டது :

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 2 \\
& 3 x_{1}+4 x_{2} \geq 12 \\
& \quad x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

Use Big-M Method to
Maximize $z=3 x_{1}+2 x_{2}$
Subject to the constraints :

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 2 \\
& 3 x_{1}+4 x_{2} \geq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

17. (அ) இரட்டை முறையைப் பயன்படுத்தி கீழ்க்கண்ட பின்வரும் LPP-யை தீர்க்க.
பொிதாக்கப்பட்ட $z=2 x_{1}+x_{2}$
கட்டுப்பாடுகளுக்குட்பட்டது :

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}-2 x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

Page 16 Code No. : 20586 B

Use duality to solve the following LPP:
Maximize $z=2 x_{1}+x_{2}$
Subject to the constraints :

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}-2 x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

Or
(ஆ) பின்வரும் LPP-ஐ இரட்டை simplex முறையில் தீர்க்க.
சிறிதாக்கப்பட்ட $z=10 x_{1}+6 x_{2}+2 x_{3}$
கட்டுப்பாடுகளுக்குட்பட்டது :

$$
\begin{aligned}
& -x_{1}+x_{2}+x_{2} \geq 1 \\
& 3 x_{1}+x_{2}-x_{3} \geq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

The dual simplex method to solve the following LPP.
Minimize $z=10 x_{1}+6 x_{2}+2 x_{3}$
Subject to the constraints :

$$
\begin{aligned}
& -x_{1}+x_{2}+x_{2} \geq 1 \\
& 3 x_{1}+x_{2}-x_{3} \geq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

18. (அ) பன்வரும் இட மாற்றுதல் கணக்கினைத் தீர்க்க.

ஆரம்பம்	இலக்கு				இருப்பு
	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	1	2	1	4	30
O_{2}	3	3	2	1	50
O_{3}	4	2	5	9	20
தேவவ	20	40	30	10	

Solve the following transportation problem :

Origin	Destination				Available
	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	1	2	1	4	30
O_{2}	3	3	2	1	50
O_{3}	4	2	5	9	20
Required	20	40	30	10	
Or					

(ஆ) $x_{13}=50$ அளவுகள், $x_{14}=20$ அளவுகள், $x_{21}=$ 55 அளவுகள், $x_{31}=30$ அளவுகள், $x_{32}=35$ அளவுகள், மற்றும் $x_{34}=25$ அளவுகள் என்பவை கொடுக்கப்பட்டுள்ளது. இவை T.P. யின் உகந்த தீர்வா :
அளவுகளின் இருப்பு
தேவவயான
அளவுகள் $\quad\left(\begin{array}{cccc}6 & 1 & 9 & 3 \\ 11 & 5 & 2 & 8 \\ 10 & 12 & 4 & 7 \\ 85 & 35 & 50 & 45\end{array}\right)$

70
55
90

இல்லையெனில், அதனை சிறந்த சாத்தியமான தீர்வாக மாற்றுக.

Page 18 Code No. : 20586 B

Given $x_{13}=50$ units, $x_{14}=20$ units, $x_{21}=$ 55 units, $x_{31}=30$ units, $x_{32}=35$ units and $x_{34}=25$ units. Is it an optimal solution to the transportation problem :

Available units

| $\left(\begin{array}{cccc}6 & 1 & 9 & 3 \\ 11 & 5 & 2 & 8 \\ 10 & 12 & 4 & 7\end{array}\right)$ | 70
 85
 35 50 | 45 |
| :---: | :---: | :---: | :---: |

If not, modify it to obtain a better feasible solution.
19. (அ) பின்வரும் கணக்கிற்கு உகந்த ஒதுக்கீட்டிளை காண்க.
$\left.\begin{array}{cccc} & \text { E } & \text { F } & \text { G } \\ \text { A } & \text { H } \\ \text { B } \\ \text { C } \\ \text { D }\end{array} \begin{array}{cccc}18 & 26 & 17 & 11 \\ 13 & 28 & 14 & 26 \\ 38 & 19 & 18 & 15 \\ 19 & 26 & 24 & 10\end{array}\right)$

Find optimal assignment to the following problem.
A
B
C

D | E | F | G | H |
| :---: | :---: | :---: | :---: |
| | $\left.\begin{array}{cccc}18 & 26 & 17 & 11 \\ 13 & 28 & 14 & 26 \\ 38 & 19 & 18 & 15 \\ 19 & 26 & 24 & 10 \\ & \text { Or } & & \end{array}\right)$ | | |

Page 19 Code No. : 20586 B
(ஆ) பின்வரும் ஒதுக்கீட்டு கணக்கிற்கு உகந்த ஒதுக்கீட்டு அட்டவయையைக் காண்க.
1
2
3

4 | A | B | C | D |
| :---: | :---: | :---: | :---: |\(\left(\begin{array}{c}5

7\end{array} $$
\begin{array}{c}2 \\
9\end{array}
$$\right)\)

Determine the optimum assignment schedule for the following assignment problem.
1
2
3

4 | A | B | C | D |
| :---: | :---: | :---: | :---: |\(\left(\begin{array}{ccc}5 \& 3 \& 2

7 \& 9 \& 2

6

5 \& 4 \& 5

7 \& 7 \& 7

7\end{array}\right)\)
20. (அ) ஓரு ஆலையில், ஆறு வேலைகள் செய்ய வேண்டியுள்ளது. அவை ஒவ்வொன்றும் இரண்டு இயந்திரங்கள் A மற்றும் $\mathrm{B}, \mathrm{A}, \mathrm{B}$ என்ற வாிசசயில், வழியே செல்ல வேண்டும். அந்த வேலைகளின் செயலாக்க நேரங்கள் (மணி நேரங்களில்) இங்கே கொடுக்கப்பட்டிள்ளது.
 வேலலகளின் வாிசையைக் காண்க. Tன் மதிப்பினைக் காண்க.
வேலை :
இயந்திரம் A:

J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{6}$

இயந்திரம் B :

1	3	8	5	6	3
5	6	3	2	2	10

Page 20 Code No. : 20586 B

In a factory, there are six jobs to perform, each of which should go through two machines A and B, in the order A, B. The processing time (in hours) for the jobs are given here. You are required to determine the sequence for performing the jobs that would minimize the total elapsed time, T . What is the value of T ?

Job :	J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{6}$
Machine A :	1	3	8	5	6	3
Machine B :	5	6	3	2	2	10

Or
(ஆ) கீழ்க்கண்ட வேலைகள் மூன்று இயந்திரங்களில் ABC வாிசையில் செயலாக்கப்படிகிறது, எனில் மொத்த நேரத்தினைக் குறைப்பதற்கான
வேலைகளின் வாிசையைக் காண்க.

செயலாக்க நேரம் (மணி நேரங்களில்)	வேலை					
	1	2	3	4	5	6
இயந்திரம் A	8	3	7	2	5	1
இயந்திரம் B	3	4	5	2	1	6
இயந்திரம் C	8	7	6	9	10	9

Page 21 Code No. : 20586 B

Find the sequence that minimizes the total time required in performing the following jobs on three machines in the order ABC :

Processing Time (in hours) on	Job					
	1	2	3	4	5	6
Machine A	8	3	7	2	5	1
Machine B	3	4	5	2	1	6
Machine C	8	7	6	9	10	9

Page 22 Code No. : 20586 B
\qquad

Code No. : 20589 E Sub. Code : SEMA 6A

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - ASTRONOMY - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. Equation of time at any instant can be
\qquad
(a) Positive
(b) Negative
(c) Either positive or negative
(d) None
2. If the mean time $5^{\mathrm{h}} 12^{\mathrm{m}} 20^{\mathrm{s}}$ p.m. and the equation of time $5^{\mathrm{m}} 25^{\mathrm{s}}$ then apparent time $=$ \qquad _.
(a) $5^{\mathrm{h}} 27^{\mathrm{m}} 45^{\mathrm{s}}$ p.m.
(b) $5^{\mathrm{h}} 17^{\mathrm{m}} 25^{\mathrm{s}}$ p.m.
(c) $5^{\mathrm{h}} 17^{\mathrm{m}} 23^{\mathrm{s}}$ p.m.
(d) $5^{\mathrm{h}} 17^{\mathrm{m}} 45^{\mathrm{s}}$ p.m.
3. A lunation is about \qquad days.
(a) $28 \frac{1}{2}$
(b) $29 \frac{1}{2}$
(c) $29 \frac{1}{3}$
(d) 29
4. The moon is said to be in a quadrature if its elongation
(a) 90°
(b) 180°
(c) 0°
(d) 45°
5. The distance of moon is only 60 times the earths
\qquad .
(a) diameter
(b) perimeter
(c) radius
(d) none
6. The major solar ecliptic limit is \qquad .
(a) $15^{\circ} 24^{\prime}$
(b) $18^{\circ} 31^{\prime}$
(c) $12^{\circ} 5^{\prime}$
(d) $9^{\circ} 30^{\prime}$

Page 2 Code No. : 20589 E
7. The smallest objects moving between the orbits of
\qquad are called minor planets.
(a) Mars and Jupiter
(b) Mars and Venus
(c) Jupiter and Venus
(d) Earth and Mars
8. The mean temperature of Umbra is about
\qquad
(a) $4200^{\circ} \mathrm{C}$
(b) $4300^{\circ} \mathrm{C}$
(c) $4250^{\circ} \mathrm{C}$
(d) $4100^{\circ} \mathrm{C}$
9. Cepheids variables are periodic variable stars having periods upto \qquad days.
(a) 46
(b) 47
(c) 49
(d) 45
10. Cepheids are very useful to measure the depth of the \qquad
(a) moon
(b) earth
(c) universe
(d) none

Page 3 Code No. : 20589 E

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
11. (a) The sun rose at $5^{\mathrm{h}} 59^{\mathrm{m}}$ at a place and the equation of time on the day was $4^{m} 9^{\text {s }}$. Find the time of sunset.

Or

(b) Explain the method to convert mean solar time into sidereal time.
12. (a) Find the relation between sidereal and synodic months.

Or
(b) What is lunar day and lunar time?
13. (a) Find the angle between a direct common tangent and the line of centers of two circles.

Or

(b) Find the condition for the totality of a lunar eclipse.

Page 4 Code No. : 20589 E
[P.T.O.]
14. (a) If E is the elongation of a planet from the sun at the moments when the planet is stationary and if the orbit of the earth and planet is circular and coplanar and radii a and b respectively, show that
$\frac{b}{a}=\frac{1}{2} \tan ^{2} E+\frac{1}{2} \tan E \sqrt{4+\tan ^{2} E}$.

Or
(b) If Jupiter's mean distance from the sun is 5.2 times that of the earth, find the interval between two consecutive conjunctions of Jupiter and Earth.
15. (a) Write short notes on :
(i) Main sequence stars
(ii) Giants.

Or
(b) Find the relation between apparent and absolute magnitude of a star.

Page 5 Code No. : 20589 E

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Derive analytical expression for the equation of time.

Or
(b) Find the sidereal time at Trivandrum at 5 p.m. I.S.T. on 1st April 1949 given that the sidereal time of mean midnight at Greenwich on 1 st April was $12^{\mathrm{h}} 36^{\mathrm{m}} 5^{\mathrm{s}}$ and that the longitude of Trivandrum is $76^{\circ} 59^{\prime} 45^{\prime \prime}$.
17. (a) Derive the formula for the phase of the moon.

Or
(b) Find the path of the moon with respect to the Sun.
18. (a) Find the maximum number of eclipses in a year.

Or

(b) Find the maximum and minimum number of eclipses possible near a node of the lunar orbit.

Page 6 Code No. : 20589 E
19. (a) Find the elongation of the planets when they are stationary as seen from each other.

Or
(b) Find the different phases of a planet in one synodic revolution.
20. (a) Write briefly on Ancient Astronomy.

Or
(b) Explain briefly about "The Milky Way".

Page 7 Code No. : 20589 E

Reg. No. :

Code No. : 20590 B Sub. Code : SEMA 6 B

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - FUZZY MATHEMATICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. ஒரு பல மதிப்புகள் கணம் A இயல் கணம் எனில் அதன் உயரம் $h(A)$-ன் மதிப்பு
(அ) 0
(ஆ) 1
(இ) <1
(ஈ) >1

A fuzzy set A is called normal when $h(A)$ is
(a) 0
(b) 1
(c) <1
(d) >1
2. $S(A, B)=$ \qquad
(அ) $\frac{|A \cup B|}{|A|} \quad$ (ஆ) $\frac{|A \cap B|}{|A|}$
(இ) $\frac{|A \cup B|}{|B|}$
(ஈ) $\frac{|A \cap B|}{|B|}$
$S(A, B)=$ \qquad .
(a) $\frac{|A \cup B|}{|A|}$
(b) $\frac{|A \cap B|}{|A|}$
(c) $\frac{|A \cup B|}{|B|}$
(d) $\frac{|A \cap B|}{|B|}$
3. $\quad A, B \in \mathcal{F}(X)$ மற்றும் $\alpha, \beta \in[0,1]$ எனில் $\alpha \leq \beta \Rightarrow$ (அ) $\alpha_{A} \supseteq \beta_{A} \quad$ (ஆ) $\alpha_{A} \supseteq \beta^{+}{ }_{A}$
(இ) $\alpha^{+}{ }_{A} \subseteq \beta_{A}$
(ஈ) $\quad \alpha_{A} \supseteq \beta_{A}$
Let $A, B \in \mathcal{F}(X)$ and $\alpha, \beta \in[0,1]$. Then $\alpha \leq \beta \Rightarrow$
(a) $\alpha_{A} \supseteq \beta_{A}$
(b) $\quad \alpha_{A} \supseteq \beta^{+}{ }_{A}$
(c) $\alpha^{+}{ }_{A} \subseteq \beta_{A}$
(d) $\alpha_{A} \supseteq \beta_{A}$

Page 2 Code No. : 20590 B
4. $f: X \rightarrow Y$ என்பது ஏதேனும் ஒரு இருமதிப்புச் சார்பு மற்றும் $A \in \mathcal{F}(X)$ எனில்
(அ) $A \subset f^{-}(f(A)) \quad$ (ஆ) $A \supset f^{-1}(f(A))$
(இ) $A \subseteq f^{-1}(f(A)) \quad$ (ஈ) $\quad A \supseteq f^{-1}(f(A))$
Let $f: X \rightarrow Y$ be an arbitrary crisp function and $A \in \mathcal{F}(X)$, then
(a) $\quad A \subset f^{-}(f(A))$
(b) $\quad A \supset f^{-1}(f(A))$
(c) $\quad A \subseteq f^{-1}(f(A))$
(d) $\quad A \supseteq f^{-1}(f(A))$
5. $W=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ எனில் h_{W} என்பது
(அ) கூட்டுச் சராசாி (ஆ) பெருக்குச் சராசாி
(இ) சீரிசைச் சராசாி
(ஈ) பொதுச் சராசாி
For $W=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), h_{W}$ is the
(a) arithmetic mean
(b) geometric mean
(c) harmonic mean
(d) generalized mean
6. $u(a, b)=\min (1, a+b)$ என்பது
(அ) வழமையான சேர்ப்பு
(ஆ) இயற்கணித கூட்டுத்தொகை
(இ) வரம்புறு கூட்டுத்தொகை
(ஈ) கடுமையான சேர்ப்பு
$u(a, b)=\min (1, a+b)$ is known as
(a) Standard Union
(b) Algebraic Sum
(c) Bounded Sum
(d) Drastic Union
7. $A \cdot(B+C) \subseteq A \cdot B+A \cdot C$ என்ற பண்பின் பெயர் (அ) சேர்ப்புப் பண்பு (ஆ) பங்கீட்டுப் பண்பு
(இ) உள்சேர்ப்புப் பண்பு
(ஈ) உள் பங்கீட்டுப் பண்பு
The property $A \cdot(B+C) \subseteq A \cdot B+A \cdot C$ is known as
(a) associativity
(b) distributivity
(c) subassociativity
(d) subdistributivity

Page 4 Code No. : 20590 B
8. $\mathbb{R}_{\text {-ல் உள்ள பல மதிப்புகள் கணம் } A \text { ஒரு பல மதிப்பு }}$ எண்ணாக இருக்க வேண்டுமெனில் A எவ்வாறு இருக்கவேண்டும் ?
(அ) குவிவு கணமாக (ஆ) குவிவு அற்ற கணமாக
(இ) குறையியல் கணமாக (ஈ) இயல் கணமாக
To qualify as a fuzzy number a fuzzy set A on \mathbb{R} must be
(a) convex
(b) not convex
(c) subnormal
(d) normal
9. ஒருபடி திட்டக்கணக்கில் $A=\left\lfloor\alpha_{i j}\right\rfloor, \quad i \in N_{m}, \quad j \in N_{n}$ என்ற அணியின் பெயர்
(அ) இலக்கு அணி (ஆ) கட்டுப்பாட்டு அணி
(இ) செலவு அணி
(ஈ) முடிவெடுத்தல் அணி

In a Linear Programming Problem, the matrix $A=\left\lfloor a_{i j}\right\rfloor, i \in N_{m}, j \in N_{n}$ is
(a) goal matrix
(b) constraint matrix
(c) cost matrix
(d) decision matrix

Page 5 Code No. : 20590 B
10. பலநபர் முடிவெடுத்தலில், $S\left(x_{i}, x_{j}\right)=$ \qquad .
(அ) $\frac{N\left(x_{i}, x_{j}\right)}{n}$
(ஆ) $\frac{N\left(x_{j}, x_{i}\right)}{n}$
(இ) $\frac{n}{N\left(x_{i}, x_{j}\right)}$
(※) $\frac{n}{N\left(x_{j}, x_{i}\right)}$

In multiperson decision making $S\left(x_{i}, x_{j}\right)=$
(a) $\frac{N\left(x_{i}, x_{j}\right)}{n}$
(b) $\frac{N\left(x_{j}, x_{i}\right)}{n}$
(c) $\frac{n}{N\left(x_{i}, x_{j}\right)}$
(d) $\frac{n}{N\left(x_{j}, x_{i}\right)}$

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) வரையறு :
(i) α-வெட்டு
(ii) வலுவான α-வெட்டு
(iii) பல மதிப்புகள் கணம் A-ன் உயரம்
(iv) இயல் பல மதிப்புகள் கணம்
(v) குறறuியலல் பல மதிப்புகள் கணம்.

Page 6 Code No. : 20590 B

Define :
(i) α-cut
(ii) Strong α-cut
(iii) Height of a fuzzy set A
(iv) Normal fuzzy set
(v) Subnormal fuzzy set.

Or

(ஆ) $\mathbb{R}_{\text {-ல் உள்ள ஒரு பல மதிப்புகள் கணம் குவிவு }}$ கணம் $\Leftrightarrow A\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right]$ $x_{1}, x_{2} \in \mathbb{R}, \lambda \in[0,1]$ மற்றும் \min என்பது சிறுமச் செயலியைக் குறிக்கும் என நிரூபி.
Prove that : A fuzzy set A on \mathbb{R} is convex \Leftrightarrow $A\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right]$ for all $x_{1}, x_{2} \in \mathbb{R}$ and all $\lambda \in[0,1]$ where \min denotes the minimum operator.
12. (அ) $A, B \in \mathcal{F}(X) \quad$ மற்றும் $\quad \alpha \in[0,1] \quad$ எனில்
$\alpha(\bar{A})==^{(1-\alpha)+} \bar{A}$ என நிரூபி. Let $A, B \in \mathcal{F}(X)$. Then for all $\alpha \in[0,1]$, prove that $\alpha(\bar{A})={ }^{(1-\alpha)+} \bar{A}$.

Or

Page 7 Code No. : 20590 B
(ஆ) $f: X \rightarrow Y$ என்பது ஏதேனும் ஒரு இரு மதிப்புச் சார்பு. $A \in \mathcal{F}(X)$ எனில் நீட்சிக் கோட்பாட்டைப் பயன்படுத்தி பலமதிப்பாக்கப்பட்ட f, $\quad f(A)=\bigcup_{\alpha \in[0,1]} f\left({ }_{\alpha+} A\right)$ என்ற சமன்பாட்டை நிறைவு செய்யும் என நிரூபி.

Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then prove that for any $A \in \mathcal{F}(X)$, f fuzzfied by the extension principle satisfies the equation $f(A)=\bigcup_{\alpha \in[0,1]} f\left({ }_{\alpha+} A\right)$.
13. (அ) $\langle i, u, c\rangle$ என்பது விலக்கப்பட்ட நடுத்தர விதியையும், முண்பாட்டு விதியையும் நிறைவு செய்யும் ஒரு இரும மும்மை எனில் $\langle i, u, c\rangle$ பங்கீட்டு விதிகளை நிறைவு செய்யாது என நிரூபி.

Let $\langle i, u, c\rangle$ be a dual triple that satisfies the law of excluded middle and law of contradiction. Then, prove that $\langle i, u, c\rangle$ does not satisfy the distributive laws.

Or

Page 8 Code No. : 20590 B
(ஆ) வழமையான பல மதிப்பு கணங்களின் வெட்டே தன்னடுக்கு t-அலகு என நிரூபி.

Prove that, the standard fuzzy intersection is the only idempotent t-norm.
14. (அ) மொழியியல் மாறிகள் — விவாி.

Explain Linguistic Variables.
Or
(ஆ) MIN மற்றும் MAX ஆகியவை $\mathcal{R}_{\text {-ல் உள்ள }}$ ஈருறுப்புச் செயலிகள்.
$\operatorname{MIN}(A, B)(Z)=\underset{Z=\min (x, y)}{\operatorname{Sup}} \min [A(x), B(y)]$,
$\operatorname{MAX}(A, B)(Z)=\operatorname{Sup}_{Z=\max (x, y)} \min [A(x), B(y)]$,
$Z \in \mathbb{R}$ என வரையறுக்கப்பட்டால்,
$\operatorname{MIN}[\operatorname{Min}(A, B), C]=\operatorname{MIN}[A, \operatorname{MIN}(B, C)]$
$A, B, C \in \mathcal{R}$ என நிரூப.
Let MIN and MAX be binary operations on \mathcal{R} defined by
$\operatorname{MIN}(A, B)(Z)=\underset{Z=\min (x, y)}{\operatorname{Sup}} \min [A(x), B(y)]$,
$\operatorname{MAX}(A, B)(Z)=\underset{Z=\max (x, y)}{\operatorname{Sup}} \min [A(x), B(y)] \quad$ for
all $Z \in \mathbb{R}$. Then for any $A, B, C \in \mathcal{R}$ prove that,
$\operatorname{MIN}[\operatorname{MIN}(A, B), C]=\operatorname{MIN}[A, \operatorname{MIN}(B, C)]$.

Page 9 Code No. : 20590 B
15. (அ) $\max \sum_{j=1}^{n} C_{j} x_{j}$
s.t $\sum_{j=1}^{n} A_{i j} x_{j} \leq B_{i}\left(i \in N_{m}\right) ?$
$x_{j} \geq 0\left(j \in N_{n}\right)$,
$B_{i}, A_{i j}$ ஆகியவை பல மதிப்பு எண்கள் என்ற பல மதிப்புகள் ஒருபடி திட்டக் கணக்கைத் தீர்க்கும் முறையை விவரி.

Explain the method of solving the fuzzy linear programming problem defined by, $\max \sum_{j=1}^{n} C_{j} x_{j}$
s.t $\sum_{j=1}^{n} A_{i j} x_{j} \leq B_{i} \quad\left(i \in N_{m}\right)$ $x_{j} \geq 0 \quad\left(j \in N_{n}\right)$
where B_{i} and $A_{i j}$ are fuzzy numbers.

Or

Page 10 Code No. : 20590 B

$$
\begin{aligned}
& \text { (ஆ) பின்வரும் பல மதிப்புகள் ஒருபடி திட்டக் } \\
& \text { கணக்ககத் தீக்க. } \\
& \text { max } Z=6 x_{1}+5 x_{2} \\
& \text { கட்டுப்பாடுகள் } \\
& \qquad\langle 5,3,2\rangle x_{1}+\langle 6,4,2\rangle x_{2} \leq\langle 25,6,9\rangle \\
& \quad\langle 5,3,2\rangle x_{1}+\langle 2,1.5,1\rangle x_{2} \leq\langle 13,7,14\rangle \\
& x_{1}, x_{2}>0 . \\
& \text { Solve the following fuzzy linear } \\
& \text { programming problem. } \\
& \text { max } Z=6 x_{1}+5 x_{2} \\
& \text { S.t }\langle 5,3,2\rangle x_{1}+\langle 6,4,2\rangle x_{2} \leq\langle 25,6,9\rangle \\
& \quad\langle 5,3,2\rangle x_{1}+\langle 2,1.5,1\rangle x_{2} \leq\langle 13,7,14\rangle \\
& x_{1}, x_{2}>0 .
\end{aligned}
$$

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) இடைவெளி மதிப்பு பல மதிப்புகள் கணங்களை எடுத்துக்காட்டுடன் விவாி. மேலும் இடைவெளி மதிப்பு பல மதிப்புகள் கணங்களின் நன்மைகளையும் தீமைகளையும் எழுதுக.

Explain Interval Valued Fuzzy Sets. Also write down the advantages and disadvantages of Interval Valued Fuzzy Sets.

Or
(ஆ) இரு மதிப்பு கண செயல்முறைகளின் அடிப்படைப் பண்புகள் அனைத்தையும் எழுதுக.

Write down all the fundamental properties of crisp set operations.
17. (அ) இரண்டாம் சிதைவுறுவதல் தேற்றத்தைக் கூறி நிரூபி.

State and prove Second Decomposition Theorem.

Or
(ஆ) $f: X \rightarrow Y$ என்பது ஏதேனும் ஒரு இரு மதிப்புச் சார்பு. $\quad A \in \mathcal{F}(X), \quad \alpha \in[0,1]$ எனில் நீட்சிக் கோட்பாட்டைப் பயன்படுத்தி பலமதிப்பாக்கப்பட்ட $\quad f$-ன் பண்புகள் பின்வருவனவற்றற நிறைவு செய்யும் என நிரூபி.
(i) ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right)$
(ii) ${ }^{\alpha}[f(A)] \supseteq f\left({ }^{\alpha} A\right)$.

Page 12 Code No. : 20590 B

Let $f: X \rightarrow Y$ be an arbitrary crisp function.
Then for any $A \in \mathcal{F}(X)$ and all $\alpha \in[0,1]$, prove that the following properties of f fuzzified by the extension principle hold :
(i) ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right)$
(ii) ${ }^{\alpha}[f(A)] \supseteq f\left({ }^{\alpha} A\right)$.
18. (அ) பல மதிப்புகள் நிரப்பியின் முதலாம் வகைப்படித்தல் தேற்றத்தைக் கூறி நிரூபி.

State and prove first characterization theorem of fuzzy complements.

Or
(ஆ) எல்லா $a, b \in[0,1]$ க்கும்,
$\max (a, b) \leq u_{w}(a, b) \leq u_{\max }(a, b)$ என நிரூபி.
For all $a, b \in[0,1]$, prove that $\max (a, b) \leq u_{w}(a, b) \leq u_{\text {max }}(a, b)$.
19. (அ) பன்வருவனவற்றைக் கணக்கிடுக.
(i) $[2,5]+[1,3]$
(ii) $[2,5]-[1,3]$
(iii) $[1,1] \cdot[-2,-0.5]$
(iv) $[1,1] /[-2,-0.5]$.

Page 13 Code No. : 20590 B

Calculate the following :
(i) $[2,5]+[1,3]$
(ii) $[2,5]-[1,3]$
(iii) $[1,1] \cdot[-2,-0.5]$
(iv) $[1,1] /[-2,-0.5]$.

Or
$\begin{aligned} & \text { (ஆ) } * \in\{+,-, \cdot, /\} \\ & \text { மெற்ட்ற்ம்ச்யான } A, \quad B \quad \text { என்பவை } \\ & \text { தெத்புபுகள் எண்கள் எனில் }\end{aligned}$ $(A * B)(Z)=\underset{Z=x * y}{\operatorname{Sup}} \min [A(x), B(y)], \quad Z \in \mathbb{R}$, என வரரயறுக்கப்படிம் பல மதிப்புகள் கணம் $A * B$ ஒரு தொடர்ச்சியான பல மதிப்புகள் எண் என நிரூபி.

Let $* \in\{+,-, \cdot, /\}$ and A, B be continuous fuzzy numbers defined by $(A * B)(Z)=\operatorname{Sup}_{Z=x * y} \min [A(x), B(y)]$ for all $Z \in \mathbb{R}$, show that fuzzy set $A * B$ is a continuous fuzzy set.

Page 14 Code No. : 20590 B
20. (அ) பல நபர் முடிவெடித்தல் — விவாி.

Explain Multiperson Decision Making.

$$
\begin{aligned}
& \text { (ஆ) பின்வரும் பல மதிப்புகள் ஒருபடித் திட்டக் } \\
& \text { கணக்கைத் தீர்க். } \\
& \text { மீப்பொிதாக்கு } \\
& Z=.4 x_{1}+.3 x_{2} \\
& \text { கட்டுப்பாடுகள் } \\
& x_{1}+x_{2} \leq B_{1} \\
& 2 x_{1}+x_{2} \leq B_{2} \\
& x_{1}, x_{2} \geq 0 \\
& B_{1}(x)= \begin{cases}1 & \text { when } x \leq 400 \\
\frac{500-x)}{100} & \text { when } 400<x \leq 500 \\
0 & \text { when } 500<x\end{cases} \\
& \text { மற்றும் } \\
& B_{2}(x)= \begin{cases}1 & \text { when } x \leq 500 \\
\frac{(600-x)}{100} & \text { when } 500<x \leq 600 \\
0 & \text { when } 600<x\end{cases}
\end{aligned}
$$

Solve the following fuzzy linear programming problem.
$\operatorname{Max} Z=.4 x_{1}+.3 x_{2}$
S.t $\quad x_{1}+x_{2} \leq B_{1}$

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq B_{2} \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Where B_{1} is defined by
$B_{1}(x)= \begin{cases}1 & \text { when } x \leq 400 \\ \frac{(500-x)}{100} & \text { when } 400<x \leq 500 \\ 0 & \text { when } 500<x\end{cases}$
and B_{2} is defined by
$B_{2}(x)= \begin{cases}1 & \text { when } x \leq 500 \\ \frac{(600-x)}{100} & \text { when } 500<x \leq 600 \\ 0 & \text { when } 600<x\end{cases}$

Page 16 Code No. : 20590 B
(8 pages)
Reg. No. :

Code No. : 20590 E Sub. Code : SEMA 6 B

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - FUZZY MATHEMATICS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. A fuzzy set A is called normal when $h(A)$ is
(a) 0
(b) 1
(c) <1
(d) >1
2. $S(A, B)=$ \qquad .
(a) $\frac{|A \cup B|}{|A|}$
(b) $\frac{|A \cap B|}{|A|}$
(c) $\frac{|A \cup B|}{|B|}$
(d) $\frac{|A \cap B|}{|B|}$
3. Let $A, B \in \mathcal{F}(X)$ and $\alpha, \beta \in[0,1]$. Then $\alpha \leq \beta \Rightarrow$
(a) $\quad \alpha_{A} \supseteq \beta_{A}$
(b) $\quad \alpha_{A} \supseteq \beta^{+}{ }_{A}$
(c) $\alpha^{+}{ }_{A} \subseteq \beta_{A}$
(d) $\alpha_{A} \supseteq \beta_{A}$
4. Let $f: X \rightarrow Y$ be an arbitrary crisp function and $A \in \mathcal{F}(X)$, then
(a) $\quad A \subset f^{-}(f(A))$
(b) $\quad A \supset f^{-1}(f(A))$
(c) $\quad A \subseteq f^{-1}(f(A))$
(d) $\quad A \supseteq f^{-1}(f(A))$
5. For $W=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), h_{W}$ is the
(a) arithmetic mean
(b) geometric mean
(c) harmonic mean
(d) generalized mean
6. $u(a, b)=\min (1, a+b)$ is known as
(a) Standard Union
(b) Algebraic Sum
(c) Bounded Sum
(d) Drastic Union
7. The property $A \cdot(B+C) \subseteq A \cdot B+A \cdot C$ is known as
(a) associativity
(b) distributivity
(c) subassociativity
(d) subdistributivity
8. To qualify as a fuzzy number a fuzzy set A on \mathbb{R} must be
(a) convex
(b) not convex
(c) subnormal
(d) normal
9. In a Linear Programming Problem, the matrix $A=\left\lfloor a_{i j}\right\rfloor, i \in N_{m}, j \in N_{n}$ is
(a) goal matrix
(b) constraint matrix
(c) cost matrix
(d) decision matrix
10. In multiperson decision making $S\left(x_{i}, x_{j}\right)=$
(a) $\frac{N\left(x_{i}, x_{j}\right)}{n}$
(b) $\frac{N\left(x_{j}, x_{i}\right)}{n}$
(c) $\frac{n}{N\left(x_{i}, x_{j}\right)}$
(d) $\frac{n}{N\left(x_{j}, x_{i}\right)}$

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Define:
(i) α-cut
(ii) Strong α-cut
(iii) Height of a fuzzy set A
(iv) Normal fuzzy set
(v) Subnormal fuzzy set.

Or
Page 3 Code No. : 20590 E
(b) Prove that : A fuzzy set A on \mathbb{R} is convex \Leftrightarrow $A\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left[A\left(x_{1}\right), A\left(x_{2}\right)\right]$ for all $x_{1}, x_{2} \in \mathbb{R}$ and all $\lambda \in[0,1]$ where min denotes the minimum operator.
12. (a) Let $A, B \in \mathcal{F}(X)$. Then for all $\alpha \in[0,1]$, prove that $\alpha(\bar{A})={ }^{(1-\alpha)+} \bar{A}$.

Or
(b) Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then prove that for any $A \in \mathcal{F}(X), f$ fuzzfied by the extension principle satisfies the equation $f(A)=\bigcup_{\alpha \in[0,1]} f\left({ }_{\alpha+} A\right)$.
13. (a) Let $\langle i, u, c\rangle$ be a dual triple that satisfies the law of excluded middle and law of contradiction. Then, prove that $\langle i, u, c\rangle$ does not satisfy the distributive laws.

Or
(b) Prove that, the standard fuzzy intersection is the only idempotent t-norm.

Page 4 Code No. : 20590 E
[P.T.O.]
14. (a) Explain Linguistic Variables.

Or
(b) Let MIN and MAX be binary operations on \mathcal{R} defined by
$\operatorname{MIN}(A, B)(Z)=\operatorname{Sup}_{Z=\min (x, y)} \min [A(x), B(y)]$,
$\operatorname{MAX}(A, B)(Z)=\underset{Z=\max (x, y)}{\operatorname{Sup}} \min [A(x), B(y)] \quad$ for
all $Z \in \mathbb{R}$. Then for any $A, B, C \in \mathcal{R}$ prove that,
$\operatorname{MIN}[\operatorname{MIN}(A, B), C]=\operatorname{MIN}[A, \operatorname{MIN}(B, C)]$.
15. (a) Explain the method of solving the fuzzy linear programming problem defined by, $\max \sum_{j=1}^{n} C_{j} x_{j}$
s.t $\sum_{j=1}^{n} A_{i j} x_{j} \leq B_{i} \quad\left(i \in N_{m}\right)$?
$x_{j} \geq 0 \quad\left(j \in N_{n}\right)$
where B_{i} and $A_{i j}$ are fuzzy numbers.
Or
(b) Solve the following fuzzy linear programming problem.
$\max Z=6 x_{1}+5 x_{2}$
S.t $\langle 5,3,2\rangle x_{1}+\langle 6,4,2\rangle x_{2} \leq\langle 25,6,9\rangle$ $\langle 5,3,2\rangle x_{1}+\langle 2,1.5,1\rangle x_{2} \leq\langle 13,7,14\rangle$
$x_{1}, x_{2}>0$
Page 5 Code No. : 20590 E

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Explain Interval Valued Fuzzy Sets. Also write down the advantages and disadvantages of Interval Valued Fuzzy Sets.

Or
(b) Write down all the fundamental properties of crisp set operations.
17. (a) State and prove Second Decomposition Theorem.

Or
(b) Let $f: X \rightarrow Y$ be an arbitrary crisp function. Then for any $A \in \mathcal{F}(X)$ and all $\alpha \in[0,1]$, prove that the following properties of f fuzzified by the extension principle hold :
(i) ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right)$
(ii) $\quad{ }^{\alpha}[f(A)] \supseteq f\left({ }^{\alpha} A\right)$.

Page 6 Code No. : 20590 E
18. (a) State and prove first characterization theorem of fuzzy complements.

Or
(b) For all $a, b \in[0,1]$, prove that $\max (a, b) \leq u_{w}(a, b) \leq u_{\text {max }}(a, b)$.
19. (a) Calculate the following :
(i) $[2,5]+[1,3]$
(ii) $[2,5]-[1,3]$
(iii) $[1,1] \cdot[-2,-0.5]$
(iv) $[1,1] /[-2,-0.5]$.

Or
(b) Let $* \in\{+,-,,, /\}$ and A, B be continuous fuzzy numbers defined by $(A * B)(Z)=\operatorname{Sup}_{Z=x * y} \min [A(x), B(y)]$ for all $Z \in \mathbb{R}$, show that fuzzy set $A * B$ is a continuous fuzzy set.

Page 7 Code No. : 20590 E
20. (a) Explain Multiperson Decision Making.

Or
(b) Solve the following fuzzy linear programming problem.
$\operatorname{Max} Z=.4 x_{1}+.3 x_{2}$
S.t $\quad x_{1}+x_{2} \leq B_{1}$

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq B_{2} \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Where B_{1} is defined by

$$
B_{1}(x)= \begin{cases}1 & \text { when } x \leq 400 \\ \frac{(500-x)}{100} & \text { when } 400<x \leq 500 \\ 0 & \text { when } 500<x\end{cases}
$$

and B_{2} is defined by

$$
B_{2}(x)= \begin{cases}1 & \text { when } x \leq 500 \\ \frac{(600-x)}{100} & \text { when } 500<x \leq 600 \\ 0 & \text { when } 600<x\end{cases}
$$

Reg. No. :

Code No. : 20591 B Sub. Code : SEMA 6 D

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - OPERATIONS RESEARCH - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. விளையாட்டில் செலுத்துதல் அணியின் அளவானது எந்த கோட்பாட்டின் படி குறைக்கப்படுகிறது ?
(அ) பதிப்பில் விளையாட்டு
(ஆ) சுழற்சி குறைப்பு
(இ) ஆதிக்க
(ஈ) இடமாற்ற விளளயாடுபவர்

The size of the payoff matrix of a game can be reduced by using the principal of \qquad —.
(a) game inversion
(b) rotation reduction
(c) dominance
(d) game transpose
2. வி円ையாடுபவரின் இலாபங்களின் கூட்டுத்தொகையானது இன்னொருவாின் நஷ்டங்களின் கூட்டுத்தொககக்கு சமமாகும் சூழ்நிலை இவ்வாறு அறியப்படுகிறது
(அ) பக்கச் சார்பான விளையாட்டு
(ஆ) பூஜ்ஜிய தொகை விளையாட்டு
(இ) நியாயமான விளையாட்டு
(ஈ) மேற்கண்ட அனைத்தும்
When the sum of gains of one player is equal to the sum of losses to another player in a game, this situation is known as
(a) biased game
(b) zero-sum game
(c) fair game
(d) all of the above

Page 2 Code No. : 20591 B
3. ஒரே ரீதியான சட்ட செலவு உருப்படிகள் குழு மாற்றுக் கொள்கைக்கு பொருத்தமானது விரும்பப்படுவது எனதால்
(அ) ஒரு கால கட்டத்தில் தோல்வியடைவது
(ஆ) திடீரென்று தோல்வியடைவது
(இ) முழுவதுமாக மற்றும் தோல்வியடைவது
(ஈ) மேற்கண்ட எதுவுமில்லை
The group replacement policy is suitable for identical law cost items which are likely to
(a) fail over a period of time
(b) fail suddenly
(c) fail completely and suddenly
(d) none of these
4. வேலை நிகழ்வின் அலகுகள் வீழ்வது மாற்றுக் கொள்கையின் பிரச்சனையாக உணரப்படுவது
(அ) உடனடியாக
(ஆ) படிப்படியாக
(இ) (அ) மற்றும் (ஆ)
(ஈ) மேற்கண்ட எதுவுமில்லை
Page 3 Code No. : 20591 B

There problem of replacement is felt when job performing units fall.
(a) suddenly
(b) gradually
(c) (a) and (b) both
(d) none of these
5. ஒரு வரிசையில் சராசாி வாடிக்கையாளர்களின் எண்ணிக்கையானது
(அ) $\frac{p}{1-p}$
(ஆ) $\frac{p^{2}}{1-p}$
(இ) $\frac{1-p}{p^{2}}$
(ஈ) மேற்கண்ட எதுவுமில்லை
Average number of customers in the queue
(a) $\frac{p}{1-p}$
(b) $\frac{p^{2}}{1-p}$
(c) $\frac{1-p}{p^{2}}$
(d) none of these
6. $(M / M / 1):(N / F I F O), \quad l=1$ எனில் $P_{0}=$
\qquad
(அ) $N+1$ (ஆ) N
(இ) $\frac{1}{N+1}$
(ஈ) $\frac{1}{N}$

Page 4 Code No. : 20591 B

For the model $(M / M / 1):(N / F I F O), l=1$ if $P_{0}=$
\qquad
(a) $N+1$
(b) N
(c) $\frac{1}{N+1}$
(d) $\frac{1}{N}$
7. CPM-ல் விரரவுத்துவக்க நேரத்திற்கும் மற்றும் தாமதித்த முடிவு நேரத்திற்கும் இடையே உள்ள வேறுபாட்டை \qquad என்கிறோம்.
(அ) தொய்வு நேரம் (ஆ) முடிவு நேரம்
(இ) ஆரம்ப நேரம்
(ஈ) ஏதுமில்லை
In CPM, the difference between the latest finish time and earliest start time is defined as
\qquad .
(a) slack time
(b) finish time
(c) start time
(d) none
8. ஒரு வலைப்பின்னல் சாியான வகையில் அமைவதற்கு தேவையான நிகழ்ச்சி
(அ) குறுகலானது
(இ) வட்டமானது
(ஆ) போலியானது
(ஈ) செவ்வகமானது

Page 5 Code No. : 20591 B

The activity to maintain the proper logic in the network
(a) narrow
(b) dummy
(c) circle
(d) rectangle
9. அடிப்படை EOQ கணக்கில் மீச்சிறு ஆண்டு இருப்புச் செலவு =
(அ) $\sqrt{2 D C_{S} C_{1}}$ (ஆ) $\sqrt{2 D C_{1} / C_{S}}$
(இ) $\sqrt{2 D C_{S} / C_{1}}$
(ஈ) இவை ஏதுவுமில்லை

For the fundamental EOQ problem, the minimum total annual inventory cost is
(a) $\sqrt{2 D C_{S} C_{1}}$
(b) $\sqrt{2 D C_{1} / C_{S}}$
(c) $\sqrt{2 D C_{S} / C_{1}}$
(d) None of these
10. பற்றாக்குறையுடன் உள்ள EOQ கணக்கில் மறுதேவை அளவு
(அ) $Q_{1}^{o}-Q^{o}$
(ஆ) $Q^{o}-Q^{o}$
(இ) $Q_{0}^{o}-Q_{1}^{o}$
(ஈ) $\frac{Q^{o}-Q_{1}^{o}}{2}$

In EOQ problem with shortages reorder level is
(a) $Q_{1}^{o}-Q^{o}$
(b) $\quad Q^{o}-Q^{o}$
(c) $Q_{0}^{o}-Q_{1}^{o}$
(d) $\frac{Q^{o}-Q_{1}^{o}}{2}$

Page 6 Code No. : 20591 B

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) ஆட்ட இயலி இடம்பெறும் கீழ்க்கண்ட சொற்களை விளக்குக. அந்த ஆட்டதிறம், சேணப்புள்ளி, விளையாட்டின் மதிப்பு, 2 ஆள் 0 - கூட்டல் ஆட்டம்.

Explain the following terms in game theory : pure strategy, saddle point, value of the game and 2 -person 0 -sum game.

Or
(ஆ) $n \times n$ விளையாட்டின் எண் கணித சமச்சீச்ர் முறையினை விளக்குக.

Explain the arithmetic method for $n \times n$ games.
12. (அ) காலப்போக்கில் அழியும் வகைகளின் மாற்றுக் கொள்கையை விவாித்து அதற்கான மொத்தவிலை $T(n)$, சராசாி விலை $A(n)$ ஆகியவற்றின் வாய்ப்பாடிகளைத் தருக.

Describe the replacement policy of items with deteriorate time and give the formulae for the total cost $T(n)$ and average cost $A(n)$.

Or

Page 7 Code No. : 20591 B
(ஆ) ஒரு இயந்திரத்தின் உாிமையாளர் இயந்திரத்தை பற்றி கீழ்க்கண்ட விவரங்களைக் கூறுகிறார். இயந்திரத்தின் வாங்கிய விலை ரூபாய் 8,000.

ஆண்டு	1	2	3	4	5	6	7	8
பராமரிப்புச் செலவு ரூ.	1,000	1,300	1,700	2,000	2,900	3,800	4,800	6,000
மறு விற்பனை வில ரு.	4,000	2,000	1,200	600	500	400	400	400

வேண்டும் ?
The maintenance cost and resale value per year of a machine whose purchase price is Rs. 8,000 is given above when should the machine be replaced?

Year	1	2	3	4	5	6	7	8
Maintenance cost in Rs.	1,000	1,300	1,700	2,000	2,900	3,800	4,800	6,000
Resale value in Rs.	4,000	2,000	1,200	600	500	400	400	400

13. (அ) ஒழுங்கு வாிசைக்குரிய அடிப்படைக் குணங்களை விவாி.

Discuss the basic characteristics of queueing.
Or
Page 8 Code No. : 20591 B
(ஆ) ஒரு தொலைக்காட்சி பெட்டியை பழுதுபார்ப்பவர் ஒரு பெட்டியை பழுதுபார்க்க சராசாியாக 30 நிமிடங்கள் எடுத்துக் கொள்கிறார். பாய்சான் பரவலை அடிப்படையாகக் கொண்டி 8 மணி நேர ஒரு நாளைக்கு 10 பெட்டிகள் வருகின்றன. ஒரு நாளைக்கு பழுது பார்ப்பவர் எத்தனை மணி நேரம் வேலை இல்லாமல் இருப்பார்? ஒரு பெட்டியை பழுதுபார்க்க கொண்டு வரும் போது சராசாியாக எத்தனை பெட்டிகள் அங்கு காத்திருக்கின்றன. என்பதையும் காண்க.

A TV repairman finds that the time spend on the TV sets has an exponential distribution with mean 30 minutes of the TV sets are repaired in the order in which they come in and the arrival is approximately Poisson with an average rate of 10 for 8 hour days, what is the repairman's idle time each day? How many jobs are a head of the average set just brought in?
14. (அ) ஒரு வேலை கீழ்க்கண்டவாறு நிகழ்ச்சிகளைக்

கொண்டுள்ளது.

நிகழ்ச்சி	1-2	1-3	2-3	2-4	3-4	4-5
காலம் (நாட்கள்)	20	25	10	12	6	10
இந்நிகழ்ச்சிகளுக்கு						

Page 9 Code No. : 20591 B

A project has the following characteristics.

Activity	$1-2$	$1-3$	$2-3$	$2-4$	$3-4$	$4-5$
Duration (days)	20	25	10	12	6	10

Draw the network for the project and find the critical path.

Or
(ஆ) PERT பற்றி குறிப்பு வரைக.
Write briefly on PERT.
15. (அ) ஒரு தொலைபேசி சாவடியில் வருகை பாய்சான் முறையில் சராசாி இடைவருகை நேரம் 5 நிமிடம் என்றவாறு உள்ளது. ஒரு தொலலபேசி அழைப்பின் சராசாி நேரம் 2 நிமிடங்களுடன் அடுக்குக் குறிப்பரவலில் அமைந்து இருக்கிறது என்றால்
(i) புதிதாக வருபவர் தொலலபேசிக்காக காத்திருக்க வேண்டிய நிகழ்தகவு யாது ?
(ii) சராசாியாக அந்த சாவடியில் உள்ளவர்கள் எத்தனை பேர்?
(iii) ஒரு வருகை 10 நிமிடங்களுக்கு மேல் காத்திருக்க வேண்டியதன் நிகழ்தகவு என்ன?

Page 10 Code No. : 20591 B

Arrivals at a telephone booth are considered to be Poisson with an average time of 5 minutes between one arrival and the next. The duration of the phone call is assumed to be distributed exponentially with mean 2 minutes.
(i) What is the probability that a person arriving at a booth will have to wait?
(ii) Find the average number of persons in the system.
(iii) What is the probability that the waiting time is more than 10 minutes?

Or
(ஆ) ஒரு பல்பொருள் அங்காடியில் இரண்டு பெண்கள் வேலை செய்கிறார்கள். ஒவ்வொரு

வாடிக்கையாளருக்கும் சேவை நேரம் படிகுறி பரவல் மற்றும் சராசாி 4 நிமிடம் 1 மணிக்கு 10 மனிதர்கள் என்ற வீதத்தில் வாடிக்கையாளர்கள் பாய்சான் முறையில் வருகிறார்கள் எனில்.

Page 11 Code No. : 20591 B
(i) தேவவக்காக காத்திருக்கும் நேரத்தின்

நிகழ்தகவு யாது ?
(ii) ஒவ்வொரு பெண்ணும் எதிர்பார்க்கும் ஓய்வு நேரத்தின் விழுக்காடு யாது ?
(iii) வாடிக்கையாளர் காத்திருக்கும் நிலையில் காத்திருக்கும் நேரத்தின் எதிர்பார்ப்பு நீளம் шாது?

A super market has two girls running up sales at the centers. If the service time for each customers is exponential with 4 minutes, and if people arrive in a Poisson fashion at the rate of 10 an hour
(i) What is the probability of having to wait for service?
(ii) What is the expected percentage of idle time for each girl?
(iii) If a customer has to wait, what is the expected length of his waiting time?

Page 12 Code No. : 20591 B

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (அ) பன்வரும் 6×2 விளையாட்டுக் கணக்கை வரைபடம் மூலம் தீர்க்க.

Solve graphically the above 6×2 game.
B_{1}
B_{2}
A_{1}
A_{2}
A_{3}
A_{4}
A_{5}
$A_{6}$$\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 6 \\ 4 & 1 \\ 2 & 2 \\ -5 & 0\end{array}\right]$

Or
Page 13 Code No. : 20591 B
(ஆ) சேணப்புள்ளி இல்லாத, 2 நபர் 0-கூட்டல் விளையாட்டின் உகந்த கலப்பு ஆட்டத்திறத்தையும் விளையாட்டின் மதிப்பையும் நிர்ணயிக்கும் தேற்றத்தை கூறி நிரூபிக்க.

State and prove the theorem for determining the optimum mixed strategies and value of the game of a 2 -person zero sum game without saddle point.
17. (அ) கூட்ட மாற்றுக் கொள்கையை பற்றி சிறு குறிப்பு வரைக.

Write a short note on group replacement policy.

Or

(ஆ) ஒரு அமைப்பில் 1,000 பல்புகள் உள்ளன. அதற்கு ஆகும் செலவு கீழே கொடுக்கப்பட்டுள்ளன.
வாரம்
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
வார இறுதியில் செயல்படும் $1000 \quad 850 \quad 500 \quad 200 \quad 100$ பல்புகளின் எண்ணிக்கை

குழு மாற்றுக் கொள்கையில் 1,000 பல்பிற்கான செலவு ரூ. 100 மற்றும் தனித்தனி மாற்றுக் கொள்கைக்கான செலவு ஒரு பல்பிறகு ரூ. 0.50. எது பொருத்தமான மாற்றுக் கொள்கை என்பதனை கண்டுபிடி.

Page 14 Code No. : 20591 B

There are 1,000 bulbs in the system.
Survival rate is given below :
Week
Bulbs in operation $\begin{array}{lllll}1000 & 850 & 500 & 200 & 100\end{array}$ at the end of the week

The group replacement of 1,000 bulbs costs Rs. 100 and individual replacement is Rs.0.50 per bulb. Suggest suitable replacement policy.
18. (அ) ஒழுங்கு வரிசை மாதிரியை வரையறை செய் மற்றும் அதன் அடிப்படை குணங்களை விளக்கு. மேலும் ஒழுங்கு வரிசை மாதிாியின் சில முக்கிய பயன்பாடுகளை கூறு.

Define queueing system and explain its basic characteristics. Also give some important applications of queueing theory.

Or

Page 15 Code No. : 20591 B
(ஆ) (i) $(M / M / 1):(N / F C F S)$ என்ற வரிசையை விவரி.
(ii) ஒரு நாளில் 2 மணி நேரத்தில் (8-10 a.m.) ஒவ்வொரு 20 நிமிடத்திற்கும் ஒரு புகைவண்டி செல்கிறது. ஆனால் பராமரிப்பு $\begin{array}{llr}36 & \text { நிமிடத்திற்கும் } & \text { குறைவாக } \\ \text { நடைபெறுகிறது } & \text { எனில் } & \text { அதன் } \\ \text { நேரத்றை }\end{array}$ கணக்கிடுக.
(1) காலியாக இருப்பதற்கான நிகழ்தகவு.
(2) புகைவண்டியின் வருகை அளவு 4 மட்டும் எனில் அதன் சராசரி வரிசை நீளம்.
(i) Explain $(M / M / 1):(N / F C F S)$
(ii) If for a period of 2 hours is a day (8-10 a.m.) trains arrive at the yard every 20 minutes but the service time continuous to remain 36 minutes, then calculate for this period.
(1) The probability that the yard is empty.
(2) Average queue length, on assumption that the line capacity of the yard is limited to 4 trains only.

Page 16 Code No. : 20591 B
19. (அ) ஓரு கூட்டு வரைபடத்தை வரைவதற்கான விதிகளையும் போலி செயல் திறன்களையும் வெளியேற்றும் பாங்கினையும் விவாி.

Describe the rules for drawing a network diagram, pointing out the role of dummy activities.

```
                    Or
(ஆ) கீழ்க்கண்ட தகவல்களைக் கொண்டு திட்ட
வலைப்பின்னல் மற்றும் தீர்மானப் பாதையின்
நீளம், மாறுபாடு, விலக்கு வர்க்கச் சராசாி
ஆகியவற்றை கணக்கிடுக.
\begin{tabular}{cccc} 
Job & \(\mathrm{t}_{\mathrm{m}}\) & \(\mathrm{t}_{\mathrm{o}}\) & \(\mathrm{t}_{\mathrm{p}}\) \\
\(1-2\) & 2 & 1 & 3
\end{tabular}
\begin{tabular}{llll}
\(2-3\) & 2 & 1 & 3
\end{tabular}
2-4 \(3 \quad 1 \quad 5\)
3-5 \(4 \quad 3 \quad 5\)
4-5 \(3 \quad 2 \quad 4\)
4-6 5
5-7 5 4 6
6-7 7 6 8
Page 17 Code No. : 20591 B
```

Job	t_{m}	t_{o}	t_{p}
$7-8$	4	2	6
$7-9$	6	4	8
$8-10$	2	1	3
$9-10$	5	3	7

Draw the network and calculate the length, variance and square deviation of variance of the critical path for the following data.

Job	t_{m}	t_{0}	t_{p}
$1-2$	2	1	3
$2-3$	2	1	3
$2-4$	3	1	5
$3-5$	4	3	5
$4-5$	3	2	4
$4-6$	5	3	7
$5-7$	5	4	6
$6-7$	7	6	8
$7-8$	4	2	6
$7-9$	6	4	8
$8-10$	2	1	3
$9-10$	5	3	7
	Page 18	Code No. : 20591 B	

20. (அ) கீழ்வரும் சேகாிப்பு மாதிிியை விளக்குக. சீரான தேவையின் அளவு, முடிவிலி உற்பத்தி, பற்றாக்குறை இல்லாத நிலை என்ற நிபந்தனைகளுடன் EOQ காண்க.

Discuss the inventory model with uniform rate of demand, infinite production and no shortages obtain EOQ.

Or
(ஆ) ஒரு வருடத்திற்கு ஒரு குறிப்பிட்ட பொருளின் தேவை 18,000 அலகுகள் ஆகும். ஒரு அலகுக்கு ஒரு ஆண்டிக்கு வைத்திருக்கும் செலவு ரூ. 1.20 ஒவ்வொரு முறறயும் வாங்கும் போது ஆகும் செலவு ரூ. 400. தட்டுப்பாடு கிடையாது.
(i) அதிகபட்ச ஆர்டாின் அளவு
(ii) ஒரு வருடத்தில் செய்யும் ஆர்டரின் எண்ணிக்கை
(iii) ஆர்டர்களுக்கு இடையேயுள்ள காலம் ஆகியவற்றைக் காண்க.

Page 19 Code No. : 20591 B

The demand for a particular item is 18,000 units per year. The holding cost per unit is Rs. 1.20 per year. The cost of procurement is Rs. 400. No shortages are allowed determine.
(i) Optimum order quantity
(ii) Number of orders per year
(iii) Time between orders.

Reg. No. :

Code No. : 20591 E Sub. Code : SEMA 6 D

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - OPERATIONS RESEARCH - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The size of the payoff matrix of a game can be reduced by using the principal of
(a) game inversion
(b) rotation reduction
(c) dominance
(d) game transpose
2. When the sum of gains of one player is equal to the sum of losses to another player in a game, this situation is known as
(a) biased game
(b) zero-sum game
(c) fair game
(d) all of the above
3. The group replacement policy is suitable for identical law cost items which are likely to
(a) fail over a period of time
(b) fail suddenly
(c) fail completely and suddenly
(d) none of these
4. There problem of replacement is felt when job performing units fall.
(a) suddenly
(b) gradually
(c) (a) and (b) both
(d) none of these
5. Average number of customers in the queue
(a) $\frac{p}{1-p}$
(b) $\frac{p^{2}}{1-p}$
(c) $\frac{1-p}{p^{2}}$
(d) none of these
6. For the model $(M / M / 1):(N / F I F O), l=1$ if $P_{0}=$
\qquad
(a) $N+1$
(b) N
(c) $\frac{1}{N+1}$
(d) $\frac{1}{N}$

Page 2 Code No. : 20591 E
7. In CPM, the difference between the latest finish time and earliest start time is defined as
\qquad .
(a) slack time
(b) finish time
(c) start time
(d) none
8. The activity to maintain the proper logic in the network
(a) narrow
(b) dummy
(c) circle
(d) rectangle
9. For the fundamental EOQ problem, the minimum total annual inventory cost is
(a) $\sqrt{2 D C_{S} C_{1}}$
(b) $\sqrt{2 D C_{1} / C_{S}}$
(c) $\sqrt{2 D C_{S} / C_{1}}$
(d) None of these
10. In EOQ problem with shortages reorder level is
(a) $Q_{1}^{o}-Q^{o}$
(b) $Q^{o}-Q^{o}$
(c) $Q_{0}^{o}-Q_{1}^{o}$
(d) $\frac{Q^{o}-Q_{1}^{o}}{2}$

Page 3 Code No. : 20591 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Explain the following terms in game theory : pure strategy, saddle point, value of the game and 2 -person 0 -sum game.

Or
(b) Explain the arithmetic method for $n \times n$ games.
12. (a) Describe the replacement policy of items with deteriorate time and give the formulae for the total cost $T(n)$ and average cost $A(n)$.

Or
(b) The maintenance cost and resale value per year of a machine whose purchase price is Rs. 8,000 is given above when should the machine be replaced?

Year	1	2	3	4	5	6	7	8
Maintenance cost in Rs.	1,000	1,300	1,700	2,000	2,900	3,800	4,800	6,000
Resale value in Rs.	4,000	2,000	1,200	600	500	400	400	400

Page 4 Code No. : 20591 E
13. (a) Discuss the basic characteristics of queueing.
Or
(b) A TV repairman finds that the time spend on the TV sets has an exponential distribution with mean 30 minutes of the TV sets are repaired in the order in which they come in and the arrival is approximately Poisson with an average rate of 10 for 8 hour days, what is the repairman's idle time each day? How many jobs are a head of the average set just brought in?
14. (a) A project has the following characteristics.

Activity	$1-2$	$1-3$	$2-3$	$2-4$	$3-4$	$4-5$
Duration (days)	20	25	10	12	6	10

Draw the network for the project and find the critical path.

Or
(b) Write briefly on PERT.
15. (a) Arrivals at a telephone booth are considered to be Poisson with an average time of 5 minutes between one arrival and the next. The duration of the phone call is assumed to be distributed exponentially with mean 2 minutes.

Page 5 Code No. : 20591 E
(i) What is the probability that a person arriving at a booth will have to wait?
(ii) Find the average number of persons in the system.
(iii) What is the probability that the waiting time is more than 10 minutes?

Or

(b) A super market has two girls running up sales at the centers. If the service time for each customers is exponential with 4 minutes, and if people arrive in a Poisson fashion at the rate of 10 an hour
(i) What is the probability of having to wait for service?
(ii) What is the expected percentage of idle time for each girl?
(iii) If a customer has to wait, what is the expected length of his waiting time?

Page 6 Code No. : 20591 E

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Solve graphically the above 6×2 game

${ }^{A}$| A_{1} |
| :---: |
| A_{2} |
| A_{3} |
| A_{4} |
| A_{5} |
| A_{6} |\(\left[\begin{array}{cc}1 \& -3

3 \& 5

-1 \& 6

4 \& 1

2 \& 2

-5 \& 0\end{array}\right]\)

Or

(b) State and prove the theorem for determining the optimum mixed strategies and value of the game of a 2 -person zero sum game without saddle point.
17. (a) Write a short note on group replacement policy.

Or

(b) There are 1,000 bulbs in the system. Survival rate is given below :
Week
Bulbs in operation

0	1	2	3	4
1000	850	500	200	100

at the end of the week
Page 7 Code No. : 20591 E

The group replacement of 1,000 bulbs costs Rs. 100 and individual replacement is Rs.0.50 per bulb. Suggest suitable replacement policy.
18. (a) Define queueing system and explain its basic characteristics. Also give some important applications of queueing theory.

Or
(b) (i) Explain $(M / M / 1):(N / F C F S)$
(ii) If for a period of 2 hours is a day (8-10 a.m.) trains arrive at the yard every 20 minutes but the service time continuous to remain 36 minutes, then calculate for this period.
(1) The probability that the yard is empty.
(2) Average queue length, on assumption that the line capacity of the yard is limited to 4 trains only.

Page 8 Code No. : 20591 E
19. (a) Describe the rules for drawing a network diagram, pointing out the role of dummy activities.

Or
(b) Draw the network and calculate the length, variance and square deviation of variance of the critical path for the following data.

Job	t_{m}	t_{o}	t_{p}
$1-2$	2	1	3
$2-3$	2	1	3
$2-4$	3	1	5
$3-5$	4	3	5
$4-5$	3	2	4
$4-6$	5	3	7
$5-7$	5	4	6
$6-7$	7	6	8
$7-8$	4	2	6
$7-9$	6	4	8
$8-10$	2	1	3
$9-10$	5	3	7

Page 9 Code No. : 20591 E
20. (a) Discuss the inventory model with uniform rate of demand, infinite production and no shortages obtain EOQ.

Or
(b) The demand for a particular item is 18,000 units per year. The holding cost per unit is Rs. 1.20 per year. The cost of procurement is Rs. 400. No shortages are allowed determine.
(i) Optimum order quantity
(ii) Number of orders per year
(iii) Time between orders.
\qquad

Code No. : 20592 E Sub. Code : SEMA 6 E

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - CODING THEORY
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. The of the word is the number of digits in the word.
(a) length
(b) code
(c) decode
(d) none
2. The word that belong to a given code with be called \qquad code.
(a) binary
(b) block
(c) perfect
(d) none
3. Any set of vectors containing zero is \qquad
(a) Linearly independent
(b) Linearly dependent
(c) Null space
(d) None
4. A code C is a \qquad code if $u+v$ is a word in C whenever u and v are in C.
(a) linear
(b) equal
(c) dual
(d) none
5. A matrix H is a parity-check matrix for some ___ code C iff the columns of H are linearly independent.
(a) linear
(b) symmetric
(c) perfect
(d) none
6. If C is a linear code of length n and dimension k, the rank of the generator matrix is \qquad
(a) k
(b) n
(c) $k+n$
(d) $k n$
7. The Golay code C_{23} is a \qquad code.
(a) error
(b) imperfect
(c) perfect
(d) none

Page 2 Code No. : 20592 E
8. In the $r^{\text {th }}$ order Reed-Muller code $R M(r, m)$, length $n=$
(a) 2^{r}
(b) 2^{m}
(c) 2^{r-1}
(d) None
9. The extended code C_{23}^{*} is indeed of \qquad
(a) C_{23}
(b) C_{24}
(c) C_{24}^{*}
(d) none
10. Hamming codes are single error correcting codes.
(a) linear
(b) perfect
(c) dual
(d) none

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Write the basic assumption about the channel.

Or
(b) Suppose we have a BSC with $\frac{1}{2}<p<1$. Let v_{1} and v_{2} be code words and w a word. Each of length b. Suppose that v_{1} and w disagree in d_{1} positions and v_{2} and w disagree in d_{2} positions. Then prove that $\varphi_{p}\left(v_{1}, w\right) \leq \varphi_{p}\left(v_{2}, w\right)$ iff $d_{1} \geq d_{2}$.

Page 3 Code No. : 20592 E
12. (a) Show that $C=\{0000,1100,0011,1111\}$ is a linear code and that its distance is $d=2$.

Or
(b) Find the different number of basis for the code $C=\langle S\rangle$, where $S=\{010,011,111\}$.
13. (a) Find a systematic code C^{\prime} equivalent to the given code C. Check that C and C^{\prime} have the same length, dimension and distance.
(i) $C=\{00000,10110,10101,00011\}$
(ii) $C=\{00000,11100,00111,11011\}$.

Or
(b) List the cosets of the linear code C with the generator matrix $G=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right)$.
14. (a) For any (n, k, d) linear code, prove that $d-1 \leq n-k$.

Or
(b) What is a lower an upper bound on the size or the dimension of a code with $n=9$ and $d=5$?

Page 4 Code No. : 20592 E
[P.T.O]
15. (a) Find the remainder and the quotient dividing $f(x)=1+x^{2}+x^{6}+x^{9}+x^{11} \quad$ by $g(x)=1+x^{2}+x^{5}$.

Or
(b) Let $\quad a \leftrightarrow a(x), \quad b \leftrightarrow b(x) \quad$ and $b^{\prime} \leftrightarrow b^{\prime}(x)=x^{n} b\left(x^{-1}\right) \bmod 1+x^{n}$. Prove that $a(x) b(x) \bmod 1+x^{n}=0$ if and only if $\pi^{k}(a) \cdot b^{\prime}=0$ for $k=0,1,2, \ldots, n-1$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) (i) Find the length of the information rate of a code $C_{2}=\{000000,010101,101010$, 111111\}.
(ii) Define Information rate, Channel; Symmetric.

Or
(b) Explain how to convert a channel with $0 \leq p \leq \frac{1}{2}$ into a channel with $\frac{1}{2} \leq p<1$. What can be said about a channel with $p=\frac{1}{2}$?

Page 5 Code No. : 20592 E
17. (a) Find a basic B for the code $C=\langle S\rangle$, where $S=\{1010,0101,1111\}$ and a basic B^{\perp} for the dual code C^{\perp}.

Or
(b) Let b_{n} be the number of different bases for K^{n}, verify the entries in the following table.

n	1	2	3	4	5	6
b_{n}	1	3	28	840	83328	27998208

18. (a) Lit the cosets of the linear code $C=\{0000$, $1011,1010,1110\}$ and also find the number of different cosets.

Or
(b) Find the parity check matrices from the following :
(i) $C=\{0000,1110,0111,1001\}$
(ii) $C=\{0000,1001,0110,1111\}$
(iii) $C=\{00000,11110,01111,10001\}$.
19. (a) Show that the weight of any word in C_{24} is a multiple of 4 .

Or
(b) Write an algorithm for IMLD for C_{24}. Further decode $w=001001001101$, 101000101000 given that the syndrome $s=100000000001$.

Page 6 Code No. : 20592 E
20. (a) Let C be a cyclic code of length n and let $g(x)$ be the generator polynomial. If $n-k=$ degree $(g(x))$, prove that
(i) The codewords corresponding to $g(x)$, $x g(x), \ldots, x^{k-1} g(x)$ are a basis for C.
(ii) $\quad c(x) \in C$ if and only if $c(x)=a(x) g(x)$ for some polynomial $a(x)$ with degree $(a(x))<k$.

Or

(b) The generator polynomial $g(x)$ for the smallest cyclic code of length n containing the word v (polynomial $v(x)$) is the greatest common divisor of $v(x)$ and $1+x^{n}$.

Page 7 Code No. : 20592 E
\qquad

Code No. : 20593 E Sub. Code : SEMA6F

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Sixth Semester
Mathematics
Major Elective - PROGRAMMING IN C
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10 \mathrm{marks})$
Answer ALL questions.
Choose the correct answer :

1. Who is the father of C language?
(a) Bjarne Stroustrup (b) James A. Gosling
(c) Dennis Ritchie
(d) E.F. Codd
2. The format identifier ' $\% d$ ' is used for \qquad data type.
(a) char
(b) int
(c) float
(d) double
3. Operator \% in C language is called \qquad
(a) Percentage
(b) Quotient
(c) Modulus
(d) Division
4. Which among the following is NOT a logical or relational operator?
(a) !=
(b) $==$
(c) ||
(d) $=$
5. An array index start with \qquad
(a) 2
(b) 1
(c) 0
(d) 3
6. What is the default return type of getchar()?
(a) char
(b) int
(c) char*
(d) none of the above
7. Array is \qquad data type in C programming language.
(a) Primitive
(b) Derived
(c) Custom
(d) None of the above

Page 2 Code No. : 20593 E
8. Smallest element of an array is called as
\qquad
(a) Middle bound
(b) Lower bound
(c) Upper bound
(d) Range
9. A recursive function can be replaced with
\qquad in C language.
(a) for loop
(b) while loop
(c) do...while loop
(d) all of the above
10. \qquad keyword must be used to achieve expected result using Recursion.
(a) printf
(b) scanf
(c) void
(d) return

PART B-($5 \times 5=25$ marks $)$
Answer ALL the questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Define Variable. Write a brief account on variables with example.

Or
(b) Describe about symbolic constants.

Page 3 Code No. : 20593 E
12. (a) Write a brief account on Relational

> Or
(b) Write C program to calculate the given number is prime or not.
13. (a) Explain in detail about conditional operator with example.

Or

(b) Add a note on reading and writing a character with example.
14. (a) Write a short note on two dimensional arrays.

Or
(b) Describe in detail about writing strings to screen.
15. (a) Discuss in detail about definition of functions.

Or
(b) Write a C program to calculate factorial of a given number using Recursion.

Page 4 Code No. : 20593 E
[P.T.O]

PART C $-(5 \times 8=40$ marks $)$
Answer ALL the questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Detail account on data types with example.

Or

(b) Explain in detail about constants with example.
17. (a) Elaborate note on Arithmetic operators with example.

Or
(b) Describe about precedence of arithmetic expressions.
18. (a) Write a brief account on if statement and its types with example.

Or
(b) Discuss in detail about looping statements with example.
19. (a) Illustrate about initialization of one dimensional array with example.

Or
(b) What is String? Describe about String handling functions with example.

Page 5 Code No. : 20593 E
20. (a) Explain in detail about category of functions with example.

Or
(b) Discuss about scope, visibility and lifetime of variables.

Page 6 Code No. : 20593 E

Reg. No. :

Code No. : 20594 B Sub. Code : SSMA 4A

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

Mathematics
Skill Based Subject - TRIGONOMETRY, LAPLACE TRANSFORMS AND FOURIER SERIES
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $1^{0}=$ \qquad ரேடியன்ஸ்
(அ) π
(ஆ) $\frac{\pi}{180}$
(இ) $\frac{\pi}{90}$
(ஈ) 2π
$1^{0}=$ \qquad radians.
(a) π
(b) $\frac{\pi}{180}$
(c) $\frac{\pi}{90}$
(d) 2π
2. $\sinh ^{-1} x=$ \qquad
(அ) $\log _{e}\left(x+\sqrt{x^{2}-1}\right) \quad$ (ஆ) $\pm \log _{e}\left(x+\sqrt{x^{2}-1}\right)$

(இ) $\log _{e}\left(x+\sqrt{x^{2}+1}\right)$
$\sinh ^{-1} x=$

(ஈ) $\pm \log _{e}\left(x+\sqrt{x^{2}+1}\right)$
\qquad
(a) $\log _{e}\left(x+\sqrt{x^{2}-1}\right)$
(b) $\pm \log _{e}\left(x+\sqrt{x^{2}-1}\right)$
(c) $\quad \log _{e}\left(x+\sqrt{x^{2}+1}\right)$
(d) $\pm \log _{e}\left(x+\sqrt{x^{2}+1}\right)$
3. θ என்பது ரேடியனில் இருந்தால், $\sin \theta=$
\qquad
(அ) $\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots . \quad$ (ஆ) $1+\theta-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{3}-\ldots$
(இ) $1+\theta+\frac{\theta^{2}}{2}+\frac{\theta^{3}}{3}+\ldots$ (ஈ) $\quad \theta+\frac{\theta^{3}}{3}+\frac{2 \theta^{5}}{15}+\ldots$.
Page 2 Code No. : 20594 B

When θ is expressed in radians, $\sin \theta=$
(a) $\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots$
(b) $1+\theta-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{3}-\ldots$.
(c) $1+\theta+\frac{\theta^{2}}{2}+\frac{\theta^{3}}{3}+\ldots$
(d) $\theta+\frac{\theta^{3}}{3}+\frac{2 \theta^{5}}{15}+\ldots$
4. $\tanh x=$ \qquad .
(அ) $\tan x$
(ஆ) $\tan (i x)$
(இ) $i \tan (i x)$
(ஈ) $-i \tan (i x)$
$\tanh x=$ \qquad .
(a) $\tan x$
(b) $\tan (i x)$
(c) $i \tan (i x)$
(d) $-i \tan (i x)$
5. $L\left(e^{2 x}\right)=$ \qquad .
(அ) $\frac{1}{s+2}$
(ஆ) $\frac{1}{s-2}$
(இ) $\frac{1}{s}$
(ஈ) 1
$L\left(e^{2 x}\right)=$ \qquad
(a) $\frac{1}{s+2}$
(b) $\frac{1}{s-2}$
(c) $\frac{1}{s}$
(d) 1

Page 3 Code No. : 20594 B
6. $\quad L^{-1}\left(\frac{1}{s}\right)$ ன் மதிப்பு
(அ) 1
(ஆ) 0
(இ) x
(ஈ) $\frac{1}{x}$

Value of $L^{-1}\left(\frac{1}{s}\right)$ is
(a) 1
(b) 0
(c) x
(d) $\frac{1}{x}$
7. $\quad L(\sinh a x)$ ன் மதிப்பு
(அ) $\frac{a}{s^{2}}$
(ஆ) $\frac{a}{(s+a)^{2}}$
(இ) $\frac{a}{s^{2}-a^{2}}$
(ஈ) $\frac{a}{s^{2}+a^{2}}$

Value of $L(\sinh a x)$ is
(a) $\frac{a}{s^{2}}$
(b) $\frac{a}{(s+a)^{2}}$
(c) $\frac{a}{s^{2}-a^{2}}$
(d) $\frac{a}{s^{2}+a^{2}}$

Page 4 Code No. : 20594 B
8. $\quad L^{-1}\left(\frac{s}{a^{2} s^{2}+b^{2}}\right)$ व் மதிப்பு
$\begin{array}{ll}\text { (அ) } a \cos b x & \text { (ஆ) } \frac{1}{a} \cos b x\end{array}$
(இ) $a^{2} \cos \left(\frac{b x}{a}\right) \quad$ (ஈ) $\frac{1}{a^{2}} \cos \left(\frac{b x}{a}\right)$
Value of $L^{-1}\left(\frac{s}{a^{2} s^{2}+b^{2}}\right)$ is
(a) $a \cos b x$
(b) $\frac{1}{a} \cos b x$
(c) $\quad a^{2} \cos \left(\frac{b x}{a}\right)$
(d) $\frac{1}{a^{2}} \cos \left(\frac{b x}{a}\right)$
9. $f(x)$ ஒரு இரட்டை சார்பாக இருக்க $f(-x)=$
\qquad .
(அ) $f(x)$
(ஆ) $-f(x)$
(இ) $f\left(x^{2}\right)$
(円) $-f\left(x^{2}\right)$
$f(x)$ is an even function of $f(-x)=$ \qquad .
(a) $f(x)$
(b) $-f(x)$
(c) $f\left(x^{2}\right)$
(d) $-f\left(x^{2}\right)$

Page 5 Code No. : 20594 B
10. $(-\pi, \pi)$ என்ற இடைவெளியில் பூரியர் கெழு $a_{n}=$
\qquad
(அ) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad$ (ஆ) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
(இ) $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x d x$
(下) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos n x d x$
In the interval $(-\pi, \pi)$, the Fourier Co-efficient $a_{n}=$ \qquad -.
(a) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
(b) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
(c) $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x d x$
(d) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos n x d x$

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) $\cos n \theta=\cos ^{n} \theta-n C_{2} \cos ^{n-2} \theta \sin ^{2} \theta+\ldots$ என நிரூபி.
Prove that

$$
\cos n \theta=\cos ^{n} \theta-n C_{2} \cos ^{n-2} \theta \sin ^{2} \theta+\ldots
$$

Or

Page 6 Code No. : 20594 B
(ஆ) $2^{5} \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10$ என நிரூபி.
Prove that
$2^{5} \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10$.
12. (அ) $\frac{1+\tanh x}{1-\tanh x}=\cosh 2 x+\sinh 2 x$ என நிரூபி.

Prove that $\frac{1+\tanh x}{1-\tanh x}=\cosh 2 x+\sinh 2 x$.
Or
(ஆ) $\cosh u=\sec \theta$ எனில் $u=\log _{e} \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$ என நிரூபி.

If $\cosh u=\sec \theta, \quad$ prove that $u=\log _{e} \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$.
13. (அ) $L\left(t^{2}+\cos 2 t \cos t+\sin ^{2} t\right)$ காண்க.

Find $L\left(t^{2}+\cos 2 t \cos t+\sin ^{2} t\right)$.
Or
(ஆ) $L^{-1}\left[\log \left(\frac{s+a}{s+b}\right)\right]$ காண்க.
Find $L^{-1}\left[\log \left(\frac{s+a}{s+b}\right)\right]$.

Page 7 Code No. : 20594 B
14. (அ) லாப்லாஸ் மாற்றியைப் பயன்படுத்தி $y^{\prime}+3 y=e^{-2 x}, y(0)=4-ஐ$ தீர்க்க.

Using Laplace transform, solve $y^{\prime}+3 y=e^{-2 x}$, given $y(0)=4$.

Or
(ஆ) $L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$ காண்க.
Find $L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$.
15. (அ) $(0, \cdot \pi)$ என்ற இடைவெளியில் $f(x)=k$ என்ற சார்புக்கு sine தொடரை காண்க.

Find the sine series for the function $f(x)=k$, $0<x<\pi$.

Or
(ஆ) $(0, \pi)$ என்ற இடைவெளியில் $f(x)=\pi-x$ என்ற சார்புக்கு cosine தொடரைக் காண்க.

Find the cosine series for the function $f(x)=\pi-x$ in the interval $(0, \pi)$.

Page 8 Code No. : 20594 B

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ)
$\cos 8 \theta=128 \cos ^{8} \theta-256 \cos ^{6} \theta+160 \cos ^{4} \theta-32 \cos ^{2} \theta+1$
என நிரூபி.
Prove that
$\cos 8 \theta=128 \cos ^{8} \theta-256 \cos ^{6} \theta+160 \cos ^{4} \theta-32 \cos ^{2} \theta+1$.
Or
(ஆ) $n \in \mathbb{Z}^{+}$எனில்
$\cos ^{n} \theta=\frac{1}{2^{n-1}}\left[\cos n \theta+n C_{1} \cos (n-2) \theta+n C_{2} \cos (n-4) \theta+\ldots\right]$
என நிரூபி.
When $n \in \mathbb{Z}^{+}$,
$\cos ^{n} \theta=\frac{1}{2^{n-1}}\left[\cos n \theta+n C_{1} \cos (n-2) \theta+n C_{2} \cos (n-4) \theta+\ldots\right]$
Prove.

Page 9 Code No. : 20594 B
17. (அ) $\log \left(\frac{1}{1-e^{i \theta}}\right)=\log \left(\frac{\operatorname{coec}\left(\frac{\theta}{2}\right)}{2}\right)+i\left(2 n \pi+\frac{\pi}{2}-\frac{\theta}{2}\right)$

என நிரூபி.
Prove that
$\log \left(\frac{1}{1-e^{i \theta}}\right)=\log \left(\frac{\operatorname{coec}\left(\frac{\theta}{2}\right)}{2}\right)+i\left(2 n \pi+\frac{\pi}{2}-\frac{\theta}{2}\right)$
Or
(ஆ) $1+\cos \theta \cos \theta+\cos ^{2} \theta \cos 2 \theta+\cos ^{3} \theta \cos 3 \theta+\ldots \infty$ என்ற முடிவுறா தொடரியின் கூட்டுத தொகையை காண்க.

Find the sum to infinity the series
$1+\cos \theta \cos \theta+\cos ^{2} \theta \cos 2 \theta+\cos ^{3} \theta \cos 3 \theta+\ldots \infty$.
18. (அ)
(i) $\quad L\left(f^{\prime \prime}(x)\right)=s^{2} L(f(x))-s f(0)-f^{\prime}(0) \quad$ என நிறுவுக.
(ii) $\quad L^{-1}\left(\frac{s}{(s+2)^{2}}\right)$ ன் மதிப்பைக் காண்க.

Page 10 Code No. : 20594 B
(i) Prove that

$$
L\left(f^{\prime \prime}(x)\right)=s^{2} L(f(x))-s f(0)-f^{\prime}(0) .
$$

(ii) Find $L^{-1}\left(\frac{s}{(s+2)^{2}}\right)$.
(ஆ) $L^{-1}\left(\frac{1+2 s}{(s+2)^{2}(s-1)^{2}}\right)$ ன் மதிப்பைக் காண்க.
Find the value of $L^{-1}\left(\frac{1+2 s}{(s+2)^{2}(s-1)^{2}}\right)$.
19. (அ) லாப்லாஸின் மாற்றத்தைப் பயன்படுத்தி தீர்க்க :
$y^{\prime \prime}+4 y^{\prime}+13 y=2 e^{-x}, \quad y(0)=0, y^{\prime}(0)=-1$.
Solve by using Laplace transform :
$y^{\prime \prime}+4 y^{\prime}+13 y=2 e^{-x}$, given $y(0)=0, y^{\prime}(0)=-1$.
Or
(ஆ) லாப்லாஸின் மாற்றத்தைப் பயன்படுத்தி தீர்க்க :
$\frac{d x}{d t}+y=\sin t, \quad \frac{d y}{d t}+x=\cos t$ given $x(0)=2$,
$y(0)=0$.
Solve by using Laplace transform :
$\frac{d x}{d t}+y=\sin t, \quad \frac{d y}{d t}+x=\cos t \quad$ given $x(0)=2$,
$y(0)=0$.
Page 11 Code No. : 20594 B
20. (அ) $-\pi<x<\pi$ என்ற இடைவெளியில் $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos n x}{n^{2}}\right]$ எனக் காட்டு.

இதிலிருந்து $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots=\frac{\pi^{2}}{12}$ என வருவி.
Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos n x}{n^{2}}\right]$ in
$-\pi<x<\pi . \quad$ Deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots=\frac{\pi^{2}}{12}$.

Or
(ஆ) $(-\pi, \pi)$ என்ற இடைவெளியில் $f(x)=x$ என்ற சார்பின் பூரியர் விாிவைக் காண்க.

Find the Fourier Expansion $f(x)=x$ in the interval $(-\pi, \pi)$.

Page 12 Code No. : 20594 B

Code No. : 20594 E Sub. Code : SSMA 4 A

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

Mathematics
Skill Based Subject - TRIGONOMETRY, LAPLACE TRANSFORMS AND FOURIER SERIES
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A $-(10 \times 1=10$ marks $)$

Answer ALL questions.
Choose the correct answer.

1. $1^{0}=$ \qquad radians.
(a) π
(b) $\frac{\pi}{180}$
(c) $\frac{\pi}{90}$
(d) 2π
2. $\sinh ^{-1} x=$ \qquad .
(a) $\quad \log _{e}\left(x+\sqrt{x^{2}-1}\right)$
(b) $\pm \log _{e}\left(x+\sqrt{x^{2}-1}\right)$
(c) $\quad \log _{e}\left(x+\sqrt{x^{2}+1}\right)$
(d) $\pm \log _{e}\left(x+\sqrt{x^{2}+1}\right)$
3. When θ is expressed in radians, $\sin \theta=$
\qquad .
(a) $\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots$
(b) $1+\theta-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{3}-\ldots$.
(c) $1+\theta+\frac{\theta^{2}}{2}+\frac{\theta^{3}}{3}+\ldots$
(d) $\theta+\frac{\theta^{3}}{3}+\frac{2 \theta^{5}}{15}+\ldots$
4. $\tanh x=$ \qquad .
(a) $\tan x$
(b) $\tan (i x)$
(c) $i \tan (i x)$
(d) $-i \tan (i x)$
5. $L\left(e^{2 x}\right)=$
(a) $\frac{1}{s+2}$
(b) $\frac{1}{s-2}$
(c) $\frac{1}{s}$
(d) 1

Page 2 Code No. : 20594 E
6. Value of $L^{-1}\left(\frac{1}{s}\right)$ is
(a) 1
(b) 0
(c) x
(d) $\frac{1}{x}$
7. Value of $L(\sinh \alpha x)$ is
(a) $\frac{a}{s^{2}}$
(b) $\frac{a}{(s+a)^{2}}$
(c) $\frac{a}{s^{2}-a^{2}}$
(d) $\frac{a}{s^{2}+a^{2}}$
8. Value of $L^{-1}\left(\frac{s}{a^{2} s^{2}+b^{2}}\right)$ is
(a) $a \cos b x$
(b) $\frac{1}{a} \cos b x$
(c) $\quad a^{2} \cos \left(\frac{b x}{a}\right)$
(d) $\frac{1}{a^{2}} \cos \left(\frac{b x}{a}\right)$
9. $\quad f(x)$ is an even function of $f(-x)=$ \qquad .
(a) $f(x)$
(b) $-f(x)$
(c) $f\left(x^{2}\right)$
(d) $-f\left(x^{2}\right)$

Page 3 Code No. : 20594 E
10. In the interval $(-\pi, \pi)$, the Fourier Co-efficient $a_{n}=$ \qquad —.
(a) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
(b) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
(c) $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos n x d x$
(d) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos n x d x$

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Prove that

$$
\cos n \theta=\cos ^{n} \theta-n C_{2} \cos ^{n-2} \theta \sin ^{2} \theta+\ldots
$$

Or
(b) Prove that

$$
2^{5} \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10 .
$$

12. (a) Prove that $\frac{1+\tanh x}{1-\tanh x}=\cosh 2 x+\sinh 2 x$.

Or
(b) If $\cosh u=\sec \theta$, prove that $u=\log _{e} \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$.

Page 4 Code No. : 20594 E
13. (a) Find $L\left(t^{2}+\cos 2 t \cos t+\sin ^{2} t\right)$.

Or
(b) Find $L^{-1}\left[\log \left(\frac{s+a}{s+b}\right)\right]$.
14. (a) Using Laplace transform, solve $y^{\prime}+3 y=e^{-2 x}$, given $y(0)=4$.

Or
(b) Find $L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$.
15. (a) Find the sine series for the function $f(x)=k$, $0<x<\pi$.

Or
(b) Find the cosine series for the function $f(x)=\pi-x$ in the interval $(0, \pi)$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that
$\cos 8 \theta=128 \cos ^{8} \theta-256 \cos ^{6} \theta+160 \cos ^{4} \theta-32 \cos ^{2} \theta+1$.
Or

Page 5 Code No. : 20594 E
(b) When $n \in \mathbb{Z}^{+}$,
$\cos ^{n} \theta=\frac{1}{2^{n-1}}\left[\cos n \theta+n C_{1} \cos (n-2) \theta+n C_{2} \cos (n-4) \theta+\ldots\right]$
Prove.
17. (a) Prove that

$$
\log \left(\frac{1}{1-e^{i \theta}}\right)=\log \left(\frac{\operatorname{coec}\left(\frac{\theta}{2}\right)}{2}\right)+i\left(2 n \pi+\frac{\pi}{2}-\frac{\theta}{2}\right)
$$

Or
(b) Find the sum to infinity the series

$$
1+\cos \theta \cos \theta+\cos ^{2} \theta \cos 2 \theta+\cos ^{3} \theta \cos 3 \theta+\ldots \infty
$$

18. (a) (i) Prove that

$$
L\left(f^{\prime \prime}(x)\right)=s^{2} L(f(x))-s f(0)-f^{\prime}(0) .
$$

(ii) Find $L^{-1}\left(\frac{s}{(s+2)^{2}}\right)$.

Or
(b) Find the value of $L^{-1}\left(\frac{1+2 s}{(s+2)^{2}(s-1)^{2}}\right)$.
19. (a) Solve by using Laplace transform :

$$
y^{\prime \prime}+4 y^{\prime}+13 y=2 e^{-x} \text {, given } y(0)=0, y^{\prime}(0)=-1 .
$$

Or
(b) Solve by using Laplace transform :
$\frac{d x}{d t}+y=\sin t, \quad \frac{d y}{d t}+x=\cos t$ given $x(0)=2$, $y(0)=0$.
20. (a) Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos n x}{n^{2}}\right]$ in $-\pi<x<\pi . \quad$ Deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots=\frac{\pi^{2}}{12}$.

Or
(b) Find the Fourier Expansion $f(x)=x$ in the interval $(-\pi, \pi)$.

Reg. No. :

Code No. : 20595 B Sub. Code : SNMA 4 A

U.G. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics

Non-Major Elective - MATHEMATICS FOR
COMPETITIVE EXAMINATIONS - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. 18 மாதத்தில் 6% வட்டி விகிதத்தில் ரூ. $2,000 \dot{க ் க ு ~}$ சேமிக்க முடியும் தனிவட்டி
(அ) ரூ. 120 (ஆ) ரூ. 180
(இ) உூ. 216
(ஈ) ஜூ. 240
How much simple interest will Rs. 2,000 earn in 18 months at 6% per annum?
(a) Rs. 120
(b) Rs. 180
(c) Rs. 216
(d) Rs. 240
2. ரூ. $8,000 \dot{க} க ு 5 \%$ வட்டி விகிதத்தில் 3 வருடங்களுக்கான தனிவட்டிக்கும் கூட்டு வட்டிக்கும் இடையே உள்ள வேறுபாடு
(அ) ரூ. 50
(ஆ) ரூ. 60
(இ) ரூ. 61
(ஈ) ரூ. 600

The difference between compound interest and simple interest on Rs. 8,000 at 5\% p.a. for 3 years is
(a) Rs. 50
(b) Rs. 60
(c) Rs. 61
(d) Rs. 600
3. A என்பவர் ஒரு வேலையை 8 மணி நேரத்திலும் B என்பவர் அதே வேலையை 12 மணி நேரத்திலும் செய்கிறார். A மற்றும் B இருவரும் இணைந்து அவ்வேலையை முடிக்க ஆகும் நேரம்
(அ) 10 மணி (ஆ) 4 மணி
(இ) $5 \frac{1}{4}$ மணி
(ஈ) $4 \frac{4}{5}$ மணி
A can do a piece of work in 8 hours while B alone can do it in 12 hrs. Both A and B working together can finish the work in
(a) 10 hrs
(b) 4 hrs
(c) $5 \frac{1}{4} \mathrm{hrs}$
(d) $4 \frac{4}{5} \mathrm{hrs}$

Page 2 Code No. : 20595 B
4. A என்பவர் ஒரு வேலையை n நாட்களில் முடித்தால், A-ன் 1 நாள் வேலை
(அ) $\frac{1}{n}$ (ஆ) n
(இ) 1
(ஈ) n^{2}
If A can do a piece of work in n days, then A's 1 day work is
(a) $\frac{1}{n}$
(b) n
(c) 1
(d) n^{2}
5. $54 \mathrm{~km} / \mathrm{hr}=$ \qquad $\mathrm{m} / \mathrm{sec}$.
(அ) 12 (ஆ) 15
(இ) 20
(円) 25
$54 \mathrm{~km} / \mathrm{hr}=$ \qquad $\mathrm{m} / \mathrm{sec}$.
(a) 12
(b) 15
(c) 20
(d) 25
6. தூரம் $=$ வேகம் \times \qquad .
(அ) நேரம்
(ஆ) வேலை
(இ) $\frac{18}{5}$
(ஈ) $\frac{5}{18}$
Page 3 Code No. : 20595 B

Distance $=$ Speed \times \qquad .
(a) time
(b) work
(c) $\frac{18}{5}$
(d) $\frac{5}{18}$
7. 15 பொம்மைகளின் விலை ரூ. 35 எனில் 39 பொம்மைகளின் விலை என்ன?
(அ) 90 (ஆ) 70
(இ) 75
(ஈ) 91
If 15 dolls cost Rs. 35 , what do 39 dolls cost?
(a) 90
(b) 70
(c) 75
(d) 91
8. $72: 132:: 48: x$ எனில் $x=$
(அ) 80 (ஆ) 82
(இ) 88
(ஈ) 86
If $72: 132:: 48: x$ then $x=$
(a) 80
(b) 82
(c) 88
(d) 86

Page 4 Code No. : 20595 B
9. ஒரு குழாய் ஒரு தொட்டியை x மணி நேரத்தில் நிரப்புமாயின், அது 1 மணி நேரத்தில் நிரப்பும் பகுதி
(அ) x
(ஆ) $\frac{1}{x}$
(இ) $\frac{1}{n}$
(ஈ) n

If a pipe can fill a tank in x hours, then part filled in 1 hr is
(a) x
(b) $\frac{1}{x}$
(c) $\frac{1}{n}$
(d) n
10. ஒரு நிமிடத்தில் 1 பக்கெட்டின் $\frac{3}{7}$ பகுதி நிரப்புமாயின், மீதமுள்ள பகுதி நிரம்ப ஆகும் நேரம்
(அ) 2 நிமிடங்கள் \quad (ஆ) $\frac{4}{3}$ நிமிடங்கள்
(இ) 7 நிமிடங்கள்
(ஈ) $\frac{8}{3}$ நிமிடங்கள்

In 1 minute $\frac{3}{7}$ of a bucket is filled. The rest of the bucket can be filled in \qquad .
(a) 2 minutes
(b) $\frac{4}{3}$ minutes
(c) 7 minutes
(d) $\frac{8}{3}$ minutes

Page 5 Code No. : 20595 B

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) 9 மாதங்களில் $6 \frac{2}{3} \%$ வட்டி விகிதத்தில் ரூ. 5,600/-க்கான தனிவட்டியைக் கண்டுபிடி.

Find S.I. on Rs. 5,600 at $6 \frac{2}{3} \%$ p.a. for 9 months.

Or

(ஆ) 2 வருடங்களில் 8% வட்டி விகிதத்தில் ரூ. 6,250-க்கான கூட்டு வட்டியைக் கண்டு|பிடி.

Find compound interest on Rs. 6,250 at 8\% p.a. for 2 years.
12. (அ) A என்பவர் ஒரு வேலையை 8 நாட்களில் முடிக்கிறார். B என்பவர் அதே வேலையை 10 நாட்களில் முடிக்கிறார். A மற்றும் B இருவருமாக இணைந்து அவ்வேலையை எத்தனை நாட்களில் முடிக்க முடியும்?

A can do a piece of work in 8 days, which B alone can do in 10 days. In how many days both working together can do it?

Or

Page 6 Code No. : 20595 B

> (ஆ) A, B மற்றும் C மூவரும் இணைந்து ஒரு வேலையை முடிக்க விலை மூ. 1,800. A - 6 நாட்களும், B-4 நாட்களும், C - நாட்களும் வேலை செய்கிறார்கள். மூவரும் $5: 6: 4$ என்ற விகிதத்தில் தினக்கூலி பெறுகிறார்கள் எனில் A மட்டும் பெற்றுக்கொள்ளும் தொமை எவ்வளவு?
> A, B and C completed a piece of work costing Rs. 1,800. A worked for 6 days, B for 4 days and C for 9 days. If their daily wages are in the ratio are in the ratio $5: 6: 4$, how much amount will be received by A.
13. (அ) அனிதா ஒரு குறிப்பிட்ட தூரத்தை, 1 மணி 24 நிமிடங்களில் கடக்க முடியும். அதில் 3-ல் 2 பகுதியை $4 \mathrm{~km} / \mathrm{hr}$ தூாத்தையும் எஞ்சியதை $5 \mathrm{~km} / \mathrm{hr}$ தூரத்திலும் கடக்கிறார் எனில் மொத்த தூரத்ததக் காண்க.

Anita can cover a certain distance in 1 hr 24 minutes by covering two-third of the distance at $4 \mathrm{~km} / \mathrm{hr}$ and the rest at $5 \mathrm{~km} / \mathrm{hr}$. Find the total distance.

Or

Page 7 Code No. : 20595 B
(ஆ) ஹிடேஷ் ஒரு குறிப்பிட்ட தூரத்தை $70 \mathrm{~km} / \mathrm{hr}$ என்ற வேகத்தில் காரில் கடக்கிறார். மீண்டும் அவர் துவங்கிய இடத்திற்கு $55 \mathrm{~km} / \mathrm{hr}$ வேகத்தில் ஸ்கூட்டாில் கடக்கிறார். எனில் மொத்த பயணத்திற்கான சாரசாி வேகத்தை காண்க.

Hitesh covers a certain distance by car driving at $70 \mathrm{~km} / \mathrm{hr}$ and returns back to the starting point riding on a scooter at 55 $\mathrm{km} / \mathrm{hr}$. Find his average speed for the whole journey.
14. (அ) 20 மனிதர்கள் இணைந்து 6 நாட்களில் 112 மீ. நீளமுடைய சுவரைக் கட்டினால், 25 மனிதர்கள் 3 நாட்களில் எவ்வளவு நீளமுடைய சுவரைக் கட்டலாம்?

If 20 men can build a wall 112 m long in 6 days, what length of a similar wall can be built by 25 men in 3 days.

Or
(ஆ) 16 ஆண்கள் ஒரு நிலத்தை 30 நாட்களில் அறுவடை செய்ய முடியும் எனில் 20 ஆண்கள் அந்த நிலத்தை எத்தனை நாட்களில் அறுவடை செய்ய முடியும்?

16 men can reap a field in 30 days. In how many days will 20 men can reap the field?

Page 8 Code No. : 20595 B
15. (அ) A மற்றும் B எனும் குழாய்கள் ஒரு தொட்டியை முறையே 24 மணி நேரம் மற்றும் 30 மணி நேரங்களில் நிரப்பும். இரண்டு குழாய்களும் ஒரே நேரத்தில் திறக்கட்படுமாயின் தொட்டியை நிரப்ப ஆகும் நேரம் என்ன?

Two pipes A and B can fill a tank in 24 hours and 30 hours respectively. If both the pipes are opened simultaneously in the empty tank, how much time will be taken by them to fill it?

Or
(ஆ) இரண்டு குழாய்கள் A மற்றும் B ஒரு தொட்டியை 24 விநாடிகள் மற்றும் 32 விநாடிகளில் நிரப்பும். இரண்டு குழாய்களும் ஓரே நேரத்தில் திறக்கப்பட்டும், எவ்வளவு நேரம் கழித்து குழாய் B-ஐ மூடினால், தொட்டி 18 விநாடிகளில் நிரம்பும் ?

Two pipes A and B can fill a tank in 24 minutes and 32 minutes respectively. If both the pipes are opened together, after how much time B should be closed so that the tank is full in 18 minutes.

Page 9 Code No. : 20595 B

$$
\text { PART C }-(5 \times 8=40 \mathrm{marks})
$$

Answer ALL questions, choosing either (a) or (b).
16. (அ) ஒரு குறிப்பிட்ட தொகையானது 2 வருடத்தில் ரூ. 756-ஆகவும் $3 \frac{1}{2}$ வருடத்தில் ரூ. 873-ஆகவும் உள்ளது எனில் அதன் கூடுதல் மற்றும் வட்டி விகிதம் கண்டுபிடி.

A certain sum of money amounts to Rs. 756 in 2 years and to Rs. 873 in $3 \frac{1}{2}$ years. Find the sum and rate of interest.

Or
(ஆ) ஒரு குறிப்பிட்ட கூடுதலுக்கு 2 வருடத்தில் 8\% வட்டி விகிதத்தில் தனிவட்டிக்கும் கூட்டு வட்டிக்குமிடையேயான வித்தியாசம் ரூ. 240 எனில் கூடிதல் காண்க.

The difference between compound interest and simple interest on a certain sum at 8% per annum for 2 years is Rs. 240. Find the sum.

Page 10 Code No. : 20595 B
17. (அ) ஒரு வேலையை A மற்றும் B 12 நாட்களிலும்; B மற்றும் C 15 நாட்களிலும்; C மற்றும் A 20 நாட்களிலும் செய்கின்றனர் எனில் மூவரும் இணைந்து எத்தனை நாட்களில் முடிப்பர்? மேலும் A மட்டும் எத்தனை நாளில் முடிப்பர்?

A and B can do a piece of work in 12 days; B and C can do it in 15 days while C and A can do it in 20 days. In how many days will they finish it working together? Also, in how many days can A alone do it?

Or
(ஆ) A என்பவர் B-ஐ விட இருமடங்கு வேகம். இருவரும் இணைந்து ஒரு வேலையை 12 நாட்களில் முடித்தால், B மட்டும் அவ்வேலையை எத்தனை நாளில் முடிப்பர்?

A works twice as fast as B. If both of them can together finish a piece of work in 12 days, then B alone can do it in how many days?
18. (அ) A மற்றும் B என்ற இரு நிலையங்களூக்கிடையேயான தொலைவு 450 கி.மீ. ஒரு தொடர்வண்டி A நிலையத்திலிருந்து மாலல 4 மணிக்கு புறப்பட்டு 60 கிமீ./மணி சராசாி வேகத்தில் B-ஐ நோக்கி புறப்பட்டது.

Page 11 Code No. : 20595 B

மற்றுமொரு தொடர்வண்டி மாலை 3:20 மணிக்கு B-யிலிருந்து A-ஐ நோக்கி 80 கிமீ/மணி வேகத்தில் புறப்பட்டது எனில் A-யிலிருந்து எவ்வளவு தொலைவில் மற்றும் எந்த மணி நேரத்தில் சந்திக்கும் ?

The distance between two stations A and B is 450 km . A train starts at 4 p.m. from A and moves towards B at an average speed of 60 $\mathrm{km} / \mathrm{hr}$. Another train starts from B at 3:20 p.m. and moves towards A at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. How far from A will the two trains meet and at what time?

Or
(ஆ) ஒரு விவசாயி 9 மணி நேரத்தில் 61 கி.மீ. தூரம் பயணம் செய்தார். அவர் ஒரு பகுதியை 4 கிமீ/மணி வேகத்தில் நடந்தும் மீதமுள்ள தூரத்தை 9 கிமீ/மணி வேகத்தில் மிதிவண்டியிலும் சென்றால் அவர் நடந்து சென்ற தூரம் என்ன?

A farmer traveled a distance of 61 km in 9 hours. He traveled partly on foot at 4 $\mathrm{km} / \mathrm{hr}$ and partly on bicycle at $9 \mathrm{~km} / \mathrm{hr}$. What is the distance traveled on foot?

Page 12 Code No. : 20595 B
19. (அ) 5 ஆண்கள் மற்றும் 9 பெண்கள் இணைந்து ஒரு வேலையை 19 நாட்களில் முடித்தால் 3 ஆண்கள் மற்றும் 6 பெண்கள் இணைந்து அவ்வேலையை எத்தனை நாட்களில் முடிப்பர்?

5 men and 9 women can do a piece of work in 19 days. In how many days will 3 men and 6 women do it?

Or
(ஆ) ஒரு நாளில் 9 மணி நேரம் 6 இயந்திரங்கள் இயங்க 15 மெட்ாிக் டன் நிலக்காி நுகருமாயின், ஒரு நாளில் 12 மணி நேரம் 8 இயந்திரங்கள் இயங்க தேவைப்படிம் நிலக்காி எவ்வளவு?

If 6 engines consume 15 metric tonnes of coal when each is running 9 hours a day, how much coal will be required for 8 engines, each running 12 hours a day, it being given that 3 engines of former type consume as much as 4 engines of later type?
20. (அ) இரண்டு குழாய்கள் ஒரு தொட்டியை முறையே 14 மற்றும் 16 மணி நேரங்களில் நிரப்பும். இரண்டு குழாய்களும் ஒரேயடியாக திறக்கப்படிம்போது, தொட்டியின் அடிப்பகுதியில் ஏற்பட்ட கசிவு காரணமாக 32 விநாடிகள் அதிகமாக தேவைப்பட்டது. தொட்டி முழுதும் நிரம்பியபின் எந்த நேரத்தில் கசிவு காரணமாக தொட்டி காலியாகும் ?

Two pipes can fill a cistern in 14 hours and 16 hours respectively. The pipes are opened simultaneously and it is found that due to leakage in the bottom it took 32 minutes more to fill the cistern. When the cistern is full, in what time will the leak empty it?

Or

(ஆ) ஒரு குழாய் 6 மணி நேரத்தில் ஒரு தொட்டியை நிரப்பும். அரைத்தொட்டி நிரம்பிய பின் அதே விதமாக 3 குழாய்கள் திறக்கப்பட்டால், தொட்டி மிரம்ப எடுத்துக் கொள்ளும் மொத்த நேரம் என்ன?

A tap can fill the tank in 6 hrs . After half the tank is filled, three more similar taps are opened. What is the total time taken to filled the tank completely?

Reg. No. :

Code No. : 20595 E Sub. Code : SNMA 4 A

U.G. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics

Non-Major Elective - MATHEMATICS FOR
COMPETITIVE EXAMINATIONS - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. How much simple interest will Rs. 2,000 earn in 18 months at 6% per annum?
(a) Rs. 120
(b) Rs. 180
(c) Rs. 216
(d) Rs. 240
2. The difference between compound interest and simple interest on Rs. 8,000 at 5\% p.a. for 3 years is
(a) Rs. 50
(b) Rs. 60
(c) Rs. 61
(d) Rs. 600
3. A can do a piece of work in 8 hours while B alone can do it in 12 hrs. Both A and B working together can finish the work in
(a) 10 hrs
(b) 4 hrs
(c) $5 \frac{1}{4} \mathrm{hrs}$
(d) $4 \frac{4}{5} \mathrm{hrs}$
4. If A can do a piece of work in n days, then A's 1 day work is
(a) $\frac{1}{n}$
(b) n
(c) 1
(d) n^{2}
5. $54 \mathrm{~km} / \mathrm{hr}=$ \qquad $\mathrm{m} / \mathrm{sec}$.
(a) 12
(b) 15
(c) 20
(d) 25
6. Distance $=$ Speed \times \qquad .
(a) time
(b) work
(c) $\frac{18}{5}$
(d) $\frac{5}{18}$

Page 2 Code No. : 20595 E
7. If 15 dolls cost Rs. 35 , what do 39 dolls cost?
(a) 90
(b) 70
(c) 75
(d) 91
8. If $72: 132:: 48: x$ then $x=$
(a) 80
(b) 82
(c) 88
(d) 86
9. If a pipe can fill a tank in x hours, then part filled in 1 hr is
(a) x
(b) $\frac{1}{x}$
(c) $\frac{1}{n}$
(d) n
10. In 1 minute $\frac{3}{7}$ of a bucket is filled. The rest of the bucket can be filled in \qquad .
(a) 2 minutes
(b) $\frac{4}{3}$ minutes
(c) 7 minutes
(d) $\frac{8}{3}$ minutes

Page 3 Code No. : 20595 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Find S.I. on Rs. 5,600 at $6 \frac{2}{3} \%$ p.a. for 9 months.

Or
(b) Find compound interest on Rs. 6,250 at 8\% p.a. for 2 years.
12. (a) A can do a piece of work in 8 days, which B alone can do in 10 days. In how many days both working together can do it?

Or

(b) A, B and C completed a piece of work costing Rs. 1,800. A worked for 6 days, B for 4 days and C for 9 days. If their daily wages are in the ratio are in the ratio $5: 6: 4$, how much amount will be received by A.
13. (a) Anita can cover a certain distance in 1 hr 24 minutes by covering two-third of the distance at $4 \mathrm{~km} / \mathrm{hr}$ and the rest at $5 \mathrm{~km} / \mathrm{hr}$. Find the total distance.

Or
Page 4 Code No. : 20595 E
[P.T.O.]
(b) Hitesh covers a certain distance by car driving at $70 \mathrm{~km} / \mathrm{hr}$ and returns back to the starting point riding on a scooter at $55 \mathrm{~km} / \mathrm{hr}$. Find his average speed for the whole journey.
14. (a) If 20 men can build a wall 112 m long in 6 days, what length of a similar wall can be built by 25 men in 3 days?

Or
(b) 16 men can reap a field in 30 days. In how many days will 20 men can reap the field?
15. (a) Two pipes A and B can fill a tank in 24 hours and 30 hours respectively. If both the pipes are opened simultaneously in the empty tank, how much time will be taken by them to fill it?

Or
(b) Two pipes A and B can fill a tank in 24 minutes and 32 minutes respectively. If both the pipes are opened together, after how much time B should be closed so that the tank is full in 18 minutes.

Page 5 Code No. : 20595 E

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) A certain sum of money amounts to Rs. 756 in 2 years and to Rs. 873 in $3 \frac{1}{2}$ years. Find the sum and rate of interest.

Or

(b) The difference between compound interest and simple interest on a certain sum at 8% per annum for 2 years is Rs. 240. Find the sum.
17. (a) A and B can do a piece of work in 12 days; B and C can do it in 15 days while C and A can do it in 20 days. In how many days will they finish it working together? Also, in how many days can A alone do it?

Or
(b) A works twice as fast as B. If both of them can together finish a piece of work in 12 days, then B alone can do it in how many days?

Page 6 Code No. : 20595 E
18. (a) The distance between two stations A and B is 450 km . A train starts at $4 \mathrm{p} . \mathrm{m}$. from A and moves towards B at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. Another train starts from B at 3:20 p.m. and moves towards A at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. How far from A will the two trains meet and at what time?

Or
(b) A farmer traveled a distance of 61 km in 9 hours. He traveled partly on foot at $4 \mathrm{~km} / \mathrm{hr}$ and partly on bicycle at $9 \mathrm{~km} / \mathrm{hr}$. What is the distance traveled on foot?
19. (a) 5 men and 9 women can do a piece of work in 19 days. In how many days will 3 men and 6 women do it?

Or

(b) If 6 engines consume 15 metric tonnes of coal when each is running 9 hours a day, how much coal will be required for 8 engines, each running 12 hours a day, it being given that 3 engines of former type consume as much as 4 engines of later type?

Page 7 Code No. : 20595 E
20. (a) Two pipes can fill a cistern in 14 hours and 16 hours respectively. The pipes are opened simultaneously and it is found that due to leakage in the bottom it took 32 minutes more to fill the cistern. When the cistern is full, in what time will the leak empty it?

Or
(b) A tap can fill the tank in 6 hrs . After half the tank is filled, three more similar taps are opened. What is the total time taken to filled the tank completely?

Reg. No. :

Code No. : 20596 B Sub. Code : SNMA 4 B

U.G. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

Mathematics
Non-Major Elective - FUNDAMENTALS OF STATISTICS - II
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $\quad N=450,(A)=150$ GÛÀ $(\alpha)=$ \qquad .
(A) 600
(B) 300
(C) 50
(D) 150

If $N=450,(A)=150$, then $(\alpha)=$ \qquad .
(a) 600
(b) 300
(c) 50
(d) 150
2. $A, \quad B$ என்ற இருவகைப் பண்புகளின், மொத்த அலைவெண் வகைகளின் எண்ணிக்கை \qquad
(அ) 3
(ஆ) 4
(இ) 6
(ஈ) 9

For two attributes A and B, the total number of class frequencies is \qquad .
(a) 3
(b) 4
(c) 6
(d) 9
3. வழக்கமான குறியீடிகளின் படி, பாஷியின் குறியீட்டெண்
\qquad -.
(அ) $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{1}} \times 100$
(ஆ) $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{1} q_{1}} \times 100$
(இ) $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}} \times 100$
(ஈ) $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}} \times 100$

With usual notations, Paasche's index number is
\qquad .
(a) $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{1}} \times 100$
(b) $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{1} q_{1}} \times 100$
(c) $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}} \times 100$
(d) $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}} \times 100$

Page 2 Code No. : 20596 B
4. $\quad p_{0}, p_{1}$ என்பன முறையே நிலையான வருடத்தின் விலைகளளயும், தற்போதைய வருடத்தின் விலைகளையும் குறிக்கிறது மற்றும் q_{0}, q_{1} என்பன முறையே நிலலயான வருடத்தின் உட்கொள்ளும் அளவினையும், தற்போதைய வருடத்தின் உட்கொள்ளும் அளவினையும் குறிக்கிறது. மேலும் $\Sigma p_{1} q_{0}=200$ மற்றும் $\Sigma p_{0} q_{0}=50$ எனில் லாஸ்பயாின் குறியீட்டெண்
\qquad —.
(அ) 25
(ஆ) 400
(இ) 125
(ஈ) 200

Let p_{0}, p_{1} denote the prices of the base year and prices of the current year respectively. Let q_{0}, q_{1} denote the quantities consumed in the base year and current year respectively. Also, if $\Sigma p_{1} q_{0}=200$ and $\Sigma p_{0} q_{0}=50$, then Laspeyre's index number is
\qquad .
(a) 25
(b) 400
(c) 125
(d) 200
5. லாஸ்பயர் மற்றும் பாஷ்சஸ் குறியீட்டி எண்களின் சராசாி
\qquad என வரையறுக்கப்படுகிறது.
(அ) Marshall-Edgeworth-ன் குறியீட்டெண்
(ஆ) Fisher-ன் குறியீட்டெண்
(இ) Fixed base குறியீட்டெண்
(ஈ) Bowley-ன் குறியீட்டெண்
Page 3 Code No. : 20596 B

The arithmetic mean of Laspeyre's and Paasche's index number is defined to be \qquad .
(a) Marshall-Edgeworth's index number
(b) Fisher's index number
(c) Fixed base index numbers
(d) Bowley's index number
6. வழக்கமான குறியீடுகளின்படி, Marshall குறியீட்டெண்
(அ) $\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}} \times 100$
(ஆ) $\frac{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}} \times 100}{2}$
(இ) $\sqrt{\frac{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}}}{2}} \times 100$
(ศ) $\sqrt{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}}} \times 100$
Page 4 Code No. : 20596 B

With the usual notation, Marshall's index number is \qquad .
(a) $\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}} \times 100$
(b) $\frac{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}} \times 100}{2}$
(c) $\sqrt{\frac{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\sum p_{0} q_{0}+\Sigma p_{0} q_{1}}}{2}} \times 100$
(d) $\sqrt{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}}} \times 100$
7. வழக்கமான குறியீடுகளின்படி, நேரத் திருப்புதல் தேர்வு என்பது \qquad _.
(அ) $I_{(01)} \times I_{10}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}}$ (ஆ) $I_{(01)} \times I_{(10)}=\frac{\Sigma p_{0} q_{0}}{\Sigma p_{1} q_{1}}$
(இ) $I_{(p q)} \times I_{(q p)}=1$
(ศ) $\quad I_{(01)} \times I_{(10)}=1$
With the usual notations, the time reversal test is
\qquad -.
(a) $\quad I_{(01)} \times I_{10}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}}$
(b) $\quad I_{(01)} \times I_{(10)}=\frac{\Sigma p_{0} q_{0}}{\Sigma p_{1} q_{1}}$
(c) $\quad I_{(p q)} \times I_{(q p)}=1$
(d) $\quad I_{(01)} \times I_{(10)}=1$

Page 5 Code No. : 20596 B
8. \qquad குறியீட்டெண் என்பது ஒரு சீரிய குறியீட்டெண்.
(A) Fisher's
(B) Paasche's
(C) Kelly's
(D) Laspeyre's
_ index number is an ideal index
number.
(a) Fisher's
(b) Paasche's
(c) Kelly's
(d) Laspeyre's
9. $\quad x_{1}, x_{2}, \ldots, x_{n}$ என்பன சாராத மாறிலிகளின் மதிப்புகள் என்க. $y_{1}, y_{2}, \ldots, y_{n}$ என்பன சா்்ந்த மாறிலிகளின் தொடர்புடைய மதிப்புகள் என்க. $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ என்ற புள்ளிகள் ஒரு வரைதாளில் குறிக்கப்பட்டால், கிடைக்கும் வரைபடம் \qquad ஆகும்.
(அ) சிதறா வரைபடம்
(ஆ) பொருத்தமான வரைபடம்
(இ) சிதறு வரைபடம்
(ஈ) எதுவுமில்லை

Page 6 Code No. : 20596 B

Let $x_{1}, x_{2}, \ldots, x_{n}$ be the values of the independent variables x_{i} and $y_{1}, y_{2}, \ldots, y_{n}$ be the corresponding values of the variables y_{i}. If the points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ are plotted on a graph paper, we obtain a diagram called \qquad _.
(a) Unscatter diagram
(b) Perfect diagram
(c) Scatter diagram
(d) None of these
10. $d_{i}=y_{i}-f\left(x_{i}\right)$ எனில், சிறும இருமடி கொள்கை என்பது
\qquad _.
(அ) Σd_{i} சிறுமம்
(ஆ) Σd_{i} பெருமம்
(இ) Σd_{i}^{2} பெருமம்
(ஈ) Σd_{i}^{2} சிறுமம்
If $d_{i}=y_{i}-f\left(x_{i}\right)$, then the principle of least square is \qquad .
(a) $\quad \Sigma d_{i}$ is minimum
(b) $\quad \Sigma d_{i}$ is maximum
(c) $\quad \Sigma d_{i}^{2}$ is maximum
(d) $\quad \Sigma d_{i}^{2}$ is minimum

Page 7 Code No. : 20596 B

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) கீழே கொடுக்கப்பட்டுள்ள A மற்றும் B-க்கான வகை நிகழ்வெண்களுக்கு, நோ்மறை, எதிர்மறை நிகழ்வெண்களையும் அதன் மொத்த கூர் நோக்கையும் கண்டுபிடி.
$(A B)=975,(\alpha B)=100,(A \beta)=25,(\alpha \beta)=950$
Given the following ultimate class frequencies of two attributes A and B. Find the frequencies of positive and negative class frequencies and the total number of observations.
$(A B)=975,(\alpha B)=100,(A \beta)=25,(\alpha \beta)=950$
Or
(ஆ) $(A)=9,(B)=12, N=20$ மற்றும் $(A B)=6$ என நேர்மறை நிகழ்வெண்கள் கொடுக்கப்பட்டிள்ளன எனில் $(\alpha \beta)$-ஐக் கண்டுபிடி.

Given the following positive class frequencies. $(A)=9,(B)=12, N=20$ and $(A B)=6$. Find the negative class frequency $(\alpha \beta)$.

Page 8 Code No. : 20596 B
12. (அ) கீழ்வருவனவற்றிற்கு லாஸ்பயாின்
குறியீட்டெண்ணைக் காண்க.

Áffõ, ÒPÒ	A		B		C	
	Âø»	AÍÄ	Âø»	AÍÄ	Âø»	AÍÄ
1950	2	8	4	14	4	2
1956	4	6	5	10	8	5

Find Laspeyre's index number for the following data.

Commodities	A		B		C	
	Yrice Quantity 2	Price Quantity	Price Quantity			
1950	2	8	4	14	4	2
1956	4	6	5	10	8	5

Or
(ஆ) கீழ்வருவனவற்றிற்கு பாஸ்டஸி-ன் குறியீட்டெண்ணைக் கண்டு|ிிட.

并£õs,mPÒ	I		II		III	
	Ask	AÍÄ	Âø»	AÍÄ	Âø»	AÍÄ
1960	10	2	30	5	20	4
1962	20	4	40	10	30	8

Find Paasche's index number.

Commodities	I		II		III	
	Price	Quantity	Price	Quantity	Price	Quantity
Year	10	2	30	5	20	4
1960	20	4	40	10	30	8
1962						

Page 9 Code No. : 20596 B
13. (அ) பௌலியின் குறியீட்டெண்ணைக் கண்டுபிடி.

ö£ ${ }_{s} \mathrm{mPO}$	Ai®õÚ Á ${ }_{\text {¢ }}$ ®		u Ø$\div £ \tilde{o ̃}^{\text {u }}{ }^{-} \mathrm{Ás}_{s} \mathrm{~h}^{\circledR}$	
	Âø»	AÍÄ	Âø»	AİÄ
A	15	3	30	5
B	10	4	30	10

Find Bowley's index number.

Items	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	15	3	30	5
B	10	4	30	10

Or
(ஆ) மார்ஷல்-எட்ஜ்வொா்த்தின் குறியீட்டெண்ணைக் கண்டுபிடி.

ö£̃̃」̀̀PÒ	Ai®õÚ Ás h®		u Ø$\div £ 0$ õø ${ }^{-}$Ás $^{\text {h® }}$	
	Âø»	AÍÄ	Âø»	AÍÄ
A	40	4	80	10
B	30	4	60	5

Find Marshall Edgeworth's index number.

Commodities	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	40	4	80	10
B	30	4	60	5

Page 10 Code No. : 20596 B
14. (அ) 1992-ஆம் ஆண்டிற்கான ஃபிஷாின் குறியீட்டெண்ணைக் கண்டிபிடி.

Bsk	A〉]		〒Põxø®	
	Âø»	AÍÄ	Âø»	AÍÄ
1990	8	100	5	15
1992	9	80	8	10

Calculate Fisher's index number for the year 1992.

Year	Rice		Wheat	
	Price	Quantity	Price	Quantity
1990	8	100	5	15
1992	9	80	8	10

Or

(ஆ) குறியீட்டு எண்களின் பண்புகளை விவாி.
Explain the characteristics of Index Numbers.
15. (அ) ஒரு நேர்கோட்டைப் பொருத்துக.

$$
\begin{array}{lcccc}
x: & 0 & 1 & 2 & 3 \\
y: & 1 & 1.8 & 3.3 & 4.5
\end{array}
$$

Fit a straight line to the following data :

$$
\begin{array}{lcccc}
x: & 0 & 1 & 2 & 3 \\
y: & 1 & 1.8 & 3.3 & 4.5
\end{array}
$$

Or
Page 11 Code No. : 20596 B
(ஆ) ஒரு நேர்க்கோட்டைப் பொருத்துக.

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 3 \\
y: & 2.1 & 3.5 & 5.4 & 7.5
\end{array}
$$

Fit a straight line to the following data :

$x:$	0	1	2	3

$y: \begin{array}{llll} & 2.1 & 3.5 & 5.4 \\ 7.5\end{array}$
PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) ஓா் இடத்தில் உள்ள 500 ஆண்டுகளில் 172 பேர் காலராவால் தாக்கப்பட்டவர்கள். மேலும், தடுப்பூசி எடுத்துக் கொண்ட 178 நபர்களில் 128 பேர் காலராவால் தாக்கப்பட்டார்கள் எனில் எத்தனை நபர்கள்
(i) தடுப்பூசி போடாமல் தாக்கப்படாதவர்கள்?
(ii) தடுப்பூசி போட்டு தாக்கப்படாதவர்கள்?
(iii) தடுப்பூசி போடாமல் தாக்கப்பட்டவர்கள்?

Of 500 men in a locality exposed to cholera, 172 in all were attacked; 178 were inoculated and of these 128 were attacked. Find the number of persons (i) not inoculated not attacked (ii) inoculated not attacked (iii) not inoculated, attacked.

Or

Page 12 Code No. : 20596 B
(ஆ) $(A)=(\alpha)=(B)=(\beta)=\frac{N}{2}$ எனில் (i) $(A B)=(\alpha \beta)$ மற்றும் (ii) $(A \beta)=(\alpha B)$ எனக் காட்டுக.

If $\quad(A)=(\alpha)=(B)=(\beta)=\frac{N}{2}, \quad$ show that
(i) $(A B)=(\alpha \beta)$ (ii) $(A \beta)=(\alpha B)$.
17. (அ) லாஸ்பியர் மற்றும் பாஸ்டஸ்-ன் குறியீட்டெண் 28 : 27 என்ற விகிதத்தில் இருந்தால், கீழே கொடுக்கப்பட்டுள்ளவற்றில் x-ன் \quad மதிப்பைக் கண்டுபிடி.

ö£õò̀PÒ	p_{0}	q_{0}	p_{1}	q_{1}
A	1	10	2	5
B	1	5	x	2

Find the value of x in the following data if the ratio between Laspeyre's and Paasche's index number is $28: 27$.

Commodities	p_{0}	q_{0}	p_{1}	q_{1}
A	1	10	2	5
B	1	5	x	2

Or

Page 13 Code No. : 20596 B
(ஆ) கீழ்வருவனவற்றிற்கு பாஸ்டஸ் மற்றும்
லாஸ்பயர்-ன் குறியீட்டெண்ணைக் கண்டுபிடி.

Ö£ $_{5} \mathrm{O} P \mathrm{P}$	p_{0}	q_{0}	p_{1}	q_{1}
A	1	5	1	10
B	2	9	3	6
C	3	15	4	10
D	3	9	4	12

Calculate Paasche's and Laspeyre's index numbers for the following data :

Commodities	p_{0}	q_{0}	p_{1}	q_{1}
A	1	5	1	10
B	2	9	3	6
C	3	15	4	10
D	3	9	4	12

18. (அ) பௌலியின் குறியீட்டெண்ணைக் கண்டுபிடி.

öfõs, mPÒ	p_{0}	q_{0}	p_{1}	q_{1}
A	2	8	4	6
B	5	10	6	4
C	4	12	5	9
D	2	15	3	10

Page 14 Code No. : 20596 B

Find Bowley's index number for the following data :

Commodities	p_{0}	q_{0}	p_{1}	q_{1}
A	2	8	4	6
B	5	10	6	4
C	4	12	5	9
D	2	15	3	10

Or
(ஆ) மார்ஷலின் குறியீட்டெண்ணைக் கண்டுபிடி.

ö£õ, ÒPÒ	Ai®õÚ Bsk		uØ$\div £ \frac{10}{}{ }^{-}{ }^{-}$Bsk	
	Âø»	AÍÄ	Âø»	AÍÄ
A	20	6	40	6
B	40	8	40	8
C	30	10	30	10
D	10	5	10	15

Find Marshall's index no. for the following data:

Commodities	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	20	6	40	6
B	40	8	40	8
C	30	10	30	10
D	10	5	10	15

Page 15 Code No. : 20596 B
19. (அ) பின்வரும் விவரங்கள் காலமாற்று சோதனையை நிறைவு செய்கிறது என நிரூபி.

Ö£ \tilde{s}_{3} ÒPÒ		A	B	C	D
Ai®õÚ Bsk	AÍÄ	50	40	120	30
	Âø»	5	6	4	3
	AÍÄ	60	50	110	35
	Âø»	7	8	5	4

Show that the given data satisfies time reversal test.

Commodity		A	B	C	D
Base	Quantity	50	40	120	30
	Price	5	6	4	3
	Quantity	60	50	110	35
Year	Price	7	8	5	4

Or
(ஆ) ஃபிஷஷிி் குறியீட்டு எண்ணைக் கண்டிபிடி.

ö£õs ${ }_{\text {OPPO}}$	Ai®õÚ Bsk		uØ$\div £ \frac{10}{}$	
	Âø»	AÍÄ	Âø»	AÍÄ
A	10	25	12	30
B	8	21	9	25
C	4.5	28	6.5	35
D	3.5	16	4	20

Page 16 Code No. : 20596 B

Find Fisher's index number for the following data:

Commodities	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	10	25	12	30
B	8	21	9	25
C	4.5	28	6.5	35
D	3.5	16	4	20

20. (அ) பின்வருவனவற்றிற்கு தகுந்த நேர்கோட்டைப் பொருத்துக. மேலும் $x=5$ என இருந்தால், y-ன் மதிப்பபக் கண்டுபிடி.

$x:$	1	3	4	6	8	9	11	14
$y:$	1	2	4	4	5	7	8	9

Fit a straight line to the following data and estimate the value of y when $x=5$.

$x:$	1	3	4	6	8	9	11	14
$y:$	1	2	4	4	5	7	8	9

Or
Page 17 Code No. : 20596 B
(ஆ) பின்கொடுக்கப்பட்டுள்ளவைக்கு,
ஒரு
நேர்கோட்டைப் பொருத்துக.

$x:$	1	2	3	4	6	8

$y: \begin{array}{llllll}2.4 & 3 & 3.6 & 4 & 5 & 6\end{array}$
Fit a straight line to the following data.
$x: \begin{array}{lllllll}1 & 2 & 3 & 4 & 6 & 8\end{array}$
$y: \begin{array}{llllll}2.4 & 3 & 3.6 & 4 & 5 & 6\end{array}$

Page 18 Code No. : 20596 B

Reg. No. :

Code No. : 20596 E Sub. Code : SNMA 4 B

U.G. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester

Mathematics
Non-Major Elective - FUNDAMENTALS OF STATISTICS - II
(For those who joined in July 2017 onwards)
Time : Three hours Maximum :75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. If $N=450,(A)=150$, then $(\alpha)=$ \qquad .
(a) 600
(b) 300
(c) 50
(d) 150
2. For two attributes A and B, the total number of class frequencies is \qquad .
(a) 3
(b) 4
(c) 6
(d) 9
3. With usual notations, Paasche's index number is
\qquad —.
(a) $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{1}} \times 100$
(b) $\frac{\Sigma p_{1} q_{0}}{\Sigma p_{1} q_{1}} \times 100$
(c) $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}} \times 100$
(d) $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}} \times 100$
4. Let p_{0}, p_{1} denote the prices of the base year and prices of the current year respectively. Let q_{0}, q_{1} denote the quantities consumed in the base year and current year respectively. Also, if $\Sigma p_{1} q_{0}=200$ and $\Sigma p_{0} q_{0}=50$, then Laspeyre's index number is
\qquad .
(a) 25
(b) 400
(c) 125
(d) 200
5. The arithmetic mean of Laspeyre's and Paasche's index number is defined to be \qquad .
(a) Marshall-Edgeworth's index number
(b) Fisher's index number
(c) Fixed base index numbers
(d) Bowley's index number

Page 2 Code No. : 20596 E

6. With the usual notation, Marshall's index number is \qquad .
(a) $\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}} \times 100$
(b) $\frac{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}} \times 100}{2}$
(c) $\sqrt{\frac{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\sum p_{0} q_{0}+\Sigma p_{0} q_{1}}}{2}} \times 100$
(d) $\sqrt{\frac{\Sigma p_{1} q_{0}+\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}+\Sigma p_{0} q_{1}}} \times 100$
7. With the usual notations, the time reversal test is
\qquad .
(a) $\quad I_{(01)} \times I_{10}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}}$
(b) $\quad I_{(01)} \times I_{(10)}=\frac{\Sigma p_{0} q_{0}}{\Sigma p_{1} q_{1}}$
(c) $\quad I_{(p q)} \times I_{(q p)}=1$
(d) $\quad I_{(01)} \times I_{(10)}=1$
8. \qquad index number is an ideal index number.
(a) Fisher's
(b) Paasche's
(c) Kelly's
(d) Laspeyre's

Page 3 Code No. : 20596 E
9. Let $x_{1}, x_{2}, \ldots ., x_{n}$ be the values of the independent variables x_{i} and $y_{1}, y_{2}, \ldots, y_{n}$ be the corresponding values of the variables y_{i}. If the points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ are plotted on a graph paper, we obtain a diagram called \qquad .
(a) Unscatter diagram
(b) Perfect diagram
(c) Scatter diagram
(d) None of these
10. If $d_{i}=y_{i}-f\left(x_{i}\right)$, then the principle of least square is \qquad .
(a) $\quad \Sigma d_{i}$ is minimum
(b) $\quad \Sigma d_{i}$ is maximum
(c) Σd_{i}^{2} is maximum
(d) $\quad \Sigma d_{i}{ }^{2}$ is minimum

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Given the following ultimate class frequencies of two attributes A and B. Find the frequencies of positive and negative class frequencies and the total number of observations.

$$
(A B)=975,(\alpha B)=100,(A \beta)=25,(\alpha \beta)=950
$$

Or

Page 4 Code No. : 20596 E

(b) Given the following positive class frequencies. $(A)=9,(B)=12, N=20$ and $(A B)=6$. Find the negative class frequency $(\alpha \beta)$.
12. (a) Find Laspeyre's index number for the following data.

Commodities	A		B		C	
	Year	Price	Quantity	Price	Quantity	Price Quantity
1950	2	8	4	14	4	2
1956	4	6	5	10	8	5

Or
(b) Find Paasche's index number.

Commodities		I		II		III	
	Price	Quantity	Price	Quantity	Price	Quantity	
1960	10	2	30	5	20	4	
1962	20	4	40	10	30	8	

13. (a) Find Bowley's index number.

Items	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	15	3	30	5
B	10	4	30	10

Or

Page 5 Code No. : 20596 E
(b) Find Marshall Edgeworth's index number.

Commodities	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	40	4	80	10
B	30	4	60	5

14. (a) Calculate Fisher's index number for the year 1992.

Year	Rice		Wheat	
	Price	Quantity	Price	Quantity
1990	8	100	5	15
1992	9	80	8	10

Or
(b) Explain the characteristics of Index Numbers.
15. (a) Fit a straight line to the following data :

$$
\begin{array}{lcccc}
x: & 0 & 1 & 2 & 3 \\
y: & 1 & 1.8 & 3.3 & 4.5 \\
& & & &
\end{array}
$$

(b) Fit a straight line to the following data :

$x:$	0	1	2	3
$y:$	2.1	3.5	5.4	7.5

Page 6 Code No. : 20596 E

PART C $-(5 \times 8=40$ marks $)$

Answer ALL questions, choosing either (a) or (b).
16. (a) Of 500 men in a locality exposed to cholera, 172 in all were attacked; 178 were inoculated and of these 128 were attacked. Find the number of persons (i) not inoculated not attacked (ii) inoculated not attacked (iii) not inoculated, attacked.

Or
(b) If $(A)=(\alpha)=(B)=(\beta)=\frac{N}{2}$, show that (i) $(A B)=(\alpha \beta)$ (ii) $(A \beta)=(\alpha B)$.
17. (a) Find the value of x in the following data if the ratio between Laspeyre's and Paasche's index number is $28: 27$.

Commodities	p_{0}	q_{0}	p_{1}	q_{1}		
A	1	10	2	5		
B	1	5	x	2		
						Or

Page 7 Code No. : 20596 E
(b) Calculate Paasche's and Laspeyre's index numbers for the following data :

Commodities	p_{0}	q_{0}	p_{1}	q_{1}
A	1	5	1	10
B	2	9	3	6
C	3	15	4	10
D	3	9	4	12

18. (a) Find Bowley's index number for the following data:

Commodities	p_{0}	q_{0}	p_{1}	q_{1}
A	2	8	4	6
B	5	10	6	4
C	4	12	5	9
D	2	15	3	10

Or
(b) Find Marshall's index no. for the following data :

Commodities	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	20	6	40	6
B	40	8	40	8
C	30	10	30	10
D	10	5	10	15

Page 8 Code No. : 20596 E
19. (a) Show that the given data satisfies time reversal test.

Commodity		A	B	C	D
Base Year	Quantity	50	40	120	30
	Price	5	6	4	3
Current Year	Quantity	60	50	110	35
	Price	7	8	5	4

Or
(b) Find Fisher's index number for the following data:

Commodities	Base Year		Current year	
	Price	Quantity	Price	Quantity
A	10	25	12	30
B	8	21	9	25
C	4.5	28	6.5	35
D	3.5	16	4	20

Page 9 Code No. : 20596 E
20. (a) Fit a straight line to the following data and estimate the value of y when $x=5$.

$x:$	1	3	4	6	8	9	11	14
$y:$	1	2	4	4	5	7	8	9

Or
(b) Fit a straight line to the following data.

$x:$	1	2	3	4	6	8
$y:$	2.4	3	3.6	4	5	6

Page 10 Code No. : 20596 E

Reg. No. :

Code No. : 20710 B Sub. Code : AMMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

First Semester
Mathematics - Core
CALCULUS AND CLASSICAL ALGEBRA
(For those who joined in July 2020 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $a x+b y+c=0$ என்ற வளைவரையின் வளைவு
(அ) $b \quad$ (ஆ) a
(இ) 0
(ஈ) ஏதுமில்லை
The curvature of the curve $a x+b y+c=0$ is
\qquad .
(a) b
(b) a
(c) 0
(d) none of the above
2. $y=e^{x}$ என்ற வளைவரைக்கு $(0,1)$ ல் வளைவு ஆரம்
\qquad
(அ) 1 (ஆ) 2
(இ) $2 \sqrt{2}$
(ஈ) ஏதுமில்லை
The radius of curvature of $y=e^{x}$ at $(0,1)$ is
\qquad —.
(a) 1
(b) 2
(c) $2 \sqrt{2}$
(d) none of the above
3. $\int_{1}^{b} \int_{1}^{a} \frac{d x d y}{x y}$ व் மதிப்பு
(அ) $\log \left(\frac{a}{b}\right)$ (ஆ) $\log (a b)$
(இ) $\log a \log b$
(ஈ) ஏதுமில்லை

The value of $\int_{1}^{b} \int_{1}^{a} \frac{d x d y}{x y}=$ \qquad -.
(a) $\log \left(\frac{a}{b}\right)$
(b) $\log (a b)$
(c) $\log a \log b$
(d) none of the above
4. $u=x+y, v=x-y$ ன் இயக்கோபியன் \qquad .
(அ) 2
(ஆ) 1
(ஈ) ஏதுமில்லை

The Jacobian of $u=x+y$ and $v=x-y$ is
\qquad _.
(a) 2
(b) 1
(c) $\quad-2$
(d) none of the above
5. $\int_{0}^{1} x^{2}(1-x) d x=$ \qquad -.
(அ) 2
(ஆ) $\frac{1}{12}$
(இ) $\frac{1}{3}$
(ஈ) ஏதுமில்லை
$\int_{0}^{1} x^{2}(1-x) d x=$ \qquad .
(a) 2
(b) $\frac{1}{12}$
(c) $\frac{1}{3}$
(d) none of the above
6. $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin \theta d r d \theta d \phi=$
(அ) $\frac{\pi}{2}$
(ஆ) $\frac{\pi}{3}$
(இ) $\frac{\pi}{4}$
(ஈ) ஏதுமில்லை

Page 3 Code No. : 20710 B
$\int_{0}^{\pi} \int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin \theta d r d \theta d \phi=$
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) none of the above
7. $\sqrt{2}+\sqrt{3}$ என்ற மூலத்ததயுடைய சமன்பாட்டின் குறறந்தபடி \qquad .
(அ) 3
(ஆ) 2
(இ) 4
(ஈ) ஏதுமில்லை
The least degree of the equation with rational coefficients one of whose roots $\sqrt{2}+\sqrt{3}$ is
(a) 3
(b) 2
(c) 4
(d) none of the above
8. $x^{3}+p x^{2}+q x+r=0$ என்ற சமன்பாட்டின் மூலங்கள் α, β, γ எனில் $\sum \frac{1}{\alpha}$ ன் மதிப்பு \qquad
(அ) $-\frac{q}{r}$
(ஆ) $\frac{q}{r}$
(இ) $\frac{p}{r}$
(ஈ) ஏதுமில்லை

Page 4 Code No. : 20710 B

If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then $\sum \frac{1}{\alpha}=$ \qquad .
(a) $-\frac{q}{r}$
(b) $\frac{q}{r}$
(c) $\frac{p}{r}$
(d) none of the above
9. $\quad x^{n}+1=0 \quad$ (n இரட்டைப்படை எண்) என்ற சமன்பாட்டின் மூலங்கள் \qquad _.
(அ) அனைத்தும் கற்பனை
(ஆ) $(n-1)$ கற்பனை
(இ) $(n-2)$ கற்பனை
(ஈ) ஏதுமில்லை
The roots of the equation $x^{n}+1=0$ (n is even) are
\qquad _.
(a) all imaginary
(b) ($n-1$) imaginary
(c) $(n-2)$ imaginary
(d) none of the above

Page 5 Code No. : 20710 B
10. $2 x^{3}+3 x^{2}-3 x-2=0$ என்ற சமன்பாட்டின் மூலங்களில் ஒன்று -2 எனில், மற்ற மூலங்கள் \qquad .
(அ) $-2,-1$
(ஆ) $-\frac{1}{2}, 1$
(இ) $-\frac{1}{2},-1$
(ஈ) ஏதுமில்லை
One of the roots of the equation $2 x^{3}+3 x^{2}-3 x-2=0$ is -2 , the other roots are
\qquad .
(a) $-2,-1$
(b) $-\frac{1}{2}, 1$
(c) $-\frac{1}{2},-1$
(d) none of the above

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) $r^{2}=a^{2} \sin 2 \theta$ என்ற வளைவரையின் $p-r$ சமன்பாடு கண்டுபிடி.
Find the p-r equation (pedal equation) of the curve $r^{2}=a^{2} \sin 2 \theta$.

Or
(ஆ) $x^{3}+y^{3}=3 a x y$ என்ற வளைவரைக்கு $\left(\frac{a}{2}, \frac{a}{2}\right)$ என்ற புள்ளியில் வளைவு மையத்தைக் காண்.
Find the coordinates of the center of curvature of the curve $x^{3}+y^{3}=3 a x y$ at $\left(\frac{a}{2}, \frac{a}{2}\right)$.

Page 6 Code No. : 20710 B
12. (அ) $y^{2}=4 a x$ மற்றும் $x^{2}=4 a y$ என்ற வளைவரைகளுக்கு பொதுவாக உள்ள பகுதியின் பரப்பளவு காண்க.

Find the area of the region common to $y^{2}=4 a x$ and $x^{2}=4 a y$.

Or
(ஆ) $u=2 x y, \quad v=x^{2}-y^{2}, \quad x=r \cos \theta, \quad y=r \sin \theta$, எனில் $\frac{\partial(u, v)}{\partial(r, \theta)}$ கண்டுபிடி. (நேரடியாக பிரதியிடாமல்)

If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, evaluate $\frac{\partial(u, v)}{\partial(r, \theta)}$ without actual substitution.
13. (அ) $\sqrt{\left(\frac{n+1}{2}\right)}=\frac{(2 n)!\sqrt{\pi}}{4^{n} n!}$ where $n=0,1,2, \ldots$ என்று நிறுவு.

Prove that $\sqrt[\left(\frac{n+1}{2}\right)]{ }=\frac{(2 n)!\sqrt{\pi}}{4^{n} n!} \quad$ where $n=0,1,2, \ldots$

Or

Page 7 Code No. : 20710 B

$$
\text { (ஆ) } \begin{aligned}
& \int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{1}{2} \beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right) \\
& \text { Бிறுவு. } \\
& \text { Prove that } \\
& \int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{1}{2} \beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right) .
\end{aligned}
$$

14. (அ) $x^{7}-x^{4}+1=0$ என்ற சமன்பாட்டின் தீர்வுகளின் ஆறாம்படியின் கூடுதல் 3 என்று நிரூபி.
Show that the sum of the $6^{\text {th }}$ powers of the roots of $x^{7}-x^{4}+1=0$ is 3 .

Or
(ஆ) α, β, γ என்பன $\quad x^{3}+a x^{2}+b x+c=0 \quad$ என்ற சமன்பாட்டின் தீர்வுகள் எனில் $\alpha \beta, \alpha \gamma, \beta \gamma$ ஐத் தீர்வுகளாகக் கொண்ட சமன்பாட்டைத் தருவி.
If α, β, γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$, form the equation whose roots are $\alpha \beta, \alpha \gamma$ and $\beta \gamma$.
15. (அ) $x^{4}-4 x^{3}-18 x^{2}-3 x+2=0$ என்ற சமன்பாட்டின் மூன்றாவது உறுப்பை நீக்கி கிடைக்கும் மாற்றப்பட்ட சமன்பாடு காண்.
Transform the equation $x^{4}-4 x^{3}-18 x^{2}-3 x+2=0$ into an equation with the third term absent.

Or
Page 8 Code No. : 20710 B
(ஆ) $x^{3}+\frac{1}{4} x^{2}-\frac{1}{16} x+\frac{1}{72}=0$ என்ற சமன்பாட்டின் விகிதமுறு கெழுக்களை நீக்குக.

Remove the fractional coefficient from the equation $x^{3}+\frac{1}{4} x^{2}-\frac{1}{16} x+\frac{1}{72}=0$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) $y=x \log x$ என்ற வளைவரைக்கு, $\frac{d y}{d x}=0$ ஆக உள்ள புள்ளியில் வளைவு மையத்தைக் காண்.

Find the coordinates of the center of curvature of $y=x \log x$ at the point where $\frac{d y}{d x}=0$.

Or
(ஆ) ஆஸ்ட்ராய்டு $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ व் வளைவு மையத்தின் நியமப்பாதையைக் கண்டுபிடி.

Find the evolute of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
17. (அ) $\int_{0}^{1} \int_{y}^{2-y} x y d x d y$ என்ற தொகையீட்டின் வாிசையை மாற்றி மதிப்பைக் கண்டுபிடி.

By changing the order of integration, evaluate the integral $\int_{0}^{1} \int_{y}^{2-y} x y d x d y$.

Or

(ஆ) போலார் தளத்திற்கு மாற்றுவதன் மூலம் $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4}$ என நிரூபி. மற்றும் $\int_{0}^{\infty} e^{-t^{2}} d t$ ன் மதிப்பைக் கணக்கிடு.

By changing into polar coordinates, show that $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4}$. Hence evaluate $\int_{0}^{\infty} e^{-t^{2}} d t$.

Page 10 Code No. : 20710 B
18.
 மற்றும் $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}$ கண்டுபிடி.
Evaluate $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of gamma
functions and hence find $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}$.

Or

(ஆ) காமா சார்பை பயன்படுத்தி
$\iint x y(1-x-y)^{1 / 2} d x d y$ யைக் காண். இங்கு D என்பது $x=0, y=0, x+y=1 \quad$ (மிகை காற்பகுதியில்) எல்லலகளாக கொண்டது.

Using gamma functions evaluate $\iint x y(1-x-y)^{1 / 2} d x d y$ over the area enclosed by the lines $x=0, y=0$ and $x+y=1$ in the positive quadrant.
19. (அ)
$6 x^{2}-11 x^{2}+6 x-1=0$ என்ற சமன்பாட்டின் மூலங்கள் இசைத்தொடர் வாிசையில் இருந்தால், சமன்பாட்டைத் தீர்.

Solve $6 x^{2}-11 x^{2}+6 x-1=0$ where roots are in harmonic progression.

Or
Page 11 Code No. : 20710 B
(ஆ) $a+b+c+d=0$ என இருந்தால்
$\frac{a^{5}+b^{5}+c^{5}+d^{5}}{5}=\frac{a^{2}+b^{2}+c^{2}+d^{2}}{2} \cdot \frac{a^{3}+b^{3}+c^{3}+d^{3}}{3}$ என்று நிரூபி.

If $a+b+c+d=0$, show that
$\frac{a^{5}+b^{5}+c^{5}+d^{5}}{5}=\frac{a^{2}+b^{2}+c^{2}+d^{2}}{2} \cdot \frac{a^{3}+b^{3}+c^{3}+d^{3}}{3}$
20. (அ) $x^{4}-3 x^{3}+4 x^{2}-2 x+1=0$ என்ற சமன்பாட்டின் மூலங்களில் ஒன்றை குறைத்து கிடைக்கும் எண்களை மூலங்களாக உடைய சமன்பாடு தலலகீழ் சமன்பாடு எனக் காட்டு. அதன் மூலம் கொடுக்கப்பட்ட சமன்பாட்டைத் தீர்.
Show that the equation $x^{4}-3 x^{3}+4 x^{2}-2 x+1=0$ can be transformed into a reciprocal equation by diminishing the roots by unity. Hence solve the given equation.

Or

(ஆ) $6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0$ என்ற சமன்பாட்டை தீா்.

Solve the equation

$$
6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0 .
$$

(7 pages)
Reg. No. :

Code No. : 20710 E Sub. Code : AMMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

First Semester
Mathematics - Core

CALCULUS AND CLASSICAL ALGEBRA

(For those who joined in July 2020 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The curvature of the curve $a x+b y+c=0$ is
\qquad _.
(a) b
(b) a
(c) 0
(d) none of the above
2. The radius of curvature of $y=e^{x}$ at $(0,1)$ is
\qquad _.
(a) 1
(b) 2
(c) $2 \sqrt{2}$
(d) none of the above
3. The value of $\int_{1}^{b} \int_{1}^{a} \frac{d x d y}{x y}=$
(a) $\quad \log \left(\frac{a}{b}\right)$
(b) $\quad \log (a b)$
(c) $\log a \log b$
(d) none of the above
4. The Jacobian of $u=x+y$ and $v=x-y$ is
\qquad
(a) 2
(b) 1
(c) $\quad-2$
(d) none of the above
5. $\int_{0}^{1} x^{2}(1-x) d x=$ \qquad .
(a) 2
(b) $\frac{1}{12}$
(c) $\frac{1}{3}$
(d) none of the above
6. $\int_{0}^{\pi / \pi} \int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin \theta d r d \theta d \phi=$ \qquad -
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) none of the above

Page 2 Code No. : 20710 E
7. The least degree of the equation with rational coefficients one of whose roots $\sqrt{2}+\sqrt{3}$ is
(a) 3
(b) 2
(c) 4
(d) none of the above
8. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then $\sum \frac{1}{\alpha}=$ \qquad .
(a) $-\frac{q}{r}$
(b) $\frac{q}{r}$
(c) $\frac{p}{r}$
(d) none of the above
9. The roots of the equation $x^{n}+1=0$ (n is even) are
\qquad .
(a) all imaginary
(b) ($n-1$) imaginary
(c) ($n-2$) imaginary
(d) none of the above
10. One of the roots of the equation $2 x^{3}+3 x^{2}-3 x-2=0$ is -2 , the other roots are
\qquad
(a) $-2,-1$
(b) $-\frac{1}{2}, 1$
(c) $-\frac{1}{2},-1$
(d) none of the above

Page 3 Code No. : 20710 E

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Find the p-r equation (pedal equation) of the curve $r^{2}=a^{2} \sin 2 \theta$.

Or
(b) Find the coordinates of the center of curvature of the curve $x^{3}+y^{3}=3 a x y$ at $\left(\frac{a}{2}, \frac{a}{2}\right)$.
12. (a) Find the area of the region common to $y^{2}=4 a x$ and $x^{2}=4 a y$.

Or
(b) If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, evaluate $\frac{\partial(u, v)}{\partial(r, \theta)}$ without actual substitution.
13. (a) Prove that $\sqrt[\left(\frac{n+1}{2}\right)]{n}=\frac{(2 n)!\sqrt{\pi}}{4^{n} n!}$ where $n=0,1,2, \ldots$

Or
(b) Prove that

$$
\int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{1}{2} \beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right) .
$$

Page 4 Code No. : 20710 E
14. (a) Show that the sum of the $6^{\text {th }}$ powers of the roots of $x^{7}-x^{4}+1=0$ is 3 .

Or

(b) If α, β, γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$, form the equation whose roots are $\alpha \beta, \alpha \gamma$ and $\beta \gamma$.
15. (a) Transform the equation $x^{4}-4 x^{3}-18 x^{2}-3 x+2=0$ into an equation with the third term absent.

Or

(b) Remove the fractional coefficient from the equation $x^{3}+\frac{1}{4} x^{2}-\frac{1}{16} x+\frac{1}{72}=0$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Find the coordinates of the center of curvature of $y=x \log x$ at the point where

$$
\frac{d y}{d x}=0 .
$$

Or
(b) Find the evolute of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
17. (a) By changing the order of integration, evaluate the integral $\int_{0}^{1} \int_{y}^{2-y} x y d x d y$.

Or

(b) By changing into polar coordinates, show that $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4}$. Hence evaluate $\int_{0}^{\infty} e^{-t^{2}} d t$.
18. (a) Evaluate $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of gamma functions and hence find $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}$.

Or
(b) Using gamma functions evaluate $\iint x y(1-x-y)^{1 / 2} d x d y$ over the area enclosed by the lines $x=0, y=0$ and $x+y=1$ in the positive quadrant.
19. (a) Solve $6 x^{2}-11 x^{2}+6 x-1=0$ where roots are in harmonic progression.

Or
(b) If $a+b+c+d=0$, show that

$$
\frac{a^{5}+b^{5}+c^{5}+d^{5}}{5}=\frac{a^{2}+b^{2}+c^{2}+d^{2}}{2} \cdot \frac{a^{3}+b^{3}+c^{3}+d^{3}}{3}
$$

20. (a) Show that the equation $x^{4}-3 x^{3}+4 x^{2}-2 x+1=0$ can be transformed into a reciprocal equation by diminishing the roots by unity. Hence solve the given equation.

Or
(b) Solve the equation

$$
6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}+35 x-6=0 .
$$

Reg. No. :

Code No. : 20711 B Sub. Code : AMMA 21

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core
DIFFERENTIAL EQUATIONS AND ANALYTICAL

GEOMETRY OF THREE DIMENSIONS

(For those who joined in July 2020 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. $x^{2} p^{2}+3 x y p+2 y^{2}=0$ என்ற சமன்பாட்டின் தீர்வு
(அ) $(x y-c)\left(y x^{2}-c\right)=0$
(ஆ) $(x y-c)=0$
(இ) $\left(y x^{2}-c\right)=0$
(ศ) $\quad x y+y x^{2}=0$

The solution of the equation $x^{2} p^{2}+3 x y p+2 y^{2}=0$ is \qquad
(a) $(x y-c)\left(y x^{2}-c\right)=0$
(b) $(x y-c)=0$
(c) $\left(y x^{2}-c\right)=0$
(d) $x y+y x^{2}=0$
2. $y \frac{d p}{d x}+p^{2}=1$ என்ற சமன்பாட்டின் தீர்வு \qquad -
(அ) $c^{2}+y^{2}=(x+c)^{2}$ (ஆ) $c^{2}+y^{2}-(x+c)=0$
(இ) $c^{2}+x^{2}=0$
(ஈ) $x^{2}+y^{2}+c^{2}=0$
The solution of the equation $y \frac{d p}{d x}+p^{2}=1$ is
(a) $c^{2}+y^{2}=(x+c)^{2}$
(b) $c^{2}+y^{2}-(x+c)=0$
(c) $c^{2}+x^{2}=0$
(d) $x^{2}+y^{2}+c^{2}=0$
3. $\left(D^{2}+5 D+4\right) y=0$ - ன் துறையலகு சமன்பாடு
\qquad .
(அ) $m^{2}+5 m+4=0$
(ஆ) $m^{2}-5 m-4=0$
(இ) $m+4=0$
(ஈ) $m^{2}+m=0$

The auxiliary equation of $\left(D^{2}+5 D+4\right) y=0$ is
\qquad .
(a) $m^{2}+5 m+4=0$
(b) $m^{2}-5 m-4=0$
(c) $m+4=0$
(d) $m^{2}+m=0$
4. $\left(D^{2}+5 D+6\right) y=e^{x}$ என்ற சமன்பாட்டின் C.F. =
(அ) $c_{1} e^{2 x}+c_{2} e^{3 x} \quad$ (ஆ) $c_{1} e^{3 x}+c_{2} e^{3 x}$
(இ) $c_{1} e^{-2 x}+c_{2} e^{-3 x}$
(ஈ) $c_{1} e^{-2 x}+c_{2} e^{3 x}$
C.F. of the equation $\left(D^{2}+5 D+6\right) y=e^{x} \quad$ is
\qquad
(a) $c_{1} e^{2 x}+c_{2} e^{3 x}$
(b) $c_{1} e^{3 x}+c_{2} e^{3 x}$
(c) $c_{1} e^{-2 x}+c_{2} e^{-3 x}$
(d) $c_{1} e^{-2 x}+c_{2} e^{3 x}$
5. $(1,2,8)$ மற்றும் $(1,1,3)$ ஆகிய புள்ளிகளை இணைக்கும் கோட்டின் மையப்புள்ளி \qquad .
(அ) $(1,3,11)$
(ஆ) $\left(1, \frac{3}{2}, \frac{11}{2}\right)$
(இ) $\left(1, \frac{2}{3}, \frac{11}{2}\right)$
(※) $\left(1, \frac{2}{3}, \frac{2}{11}\right)$

Page 3 Code No. : 20711 B

The middle point of the line joining the points $(1,2,8)$ and $(1,1,3)$ is \qquad .
(a) $(1,3,11)$
(b) $\quad\left(1, \frac{3}{2}, \frac{11}{2}\right)$
(c) $\left(1, \frac{2}{3}, \frac{11}{2}\right)$
(d) $\left(1, \frac{2}{3}, \frac{2}{11}\right)$
6. $2 x+4 y-6 z=1$ மற்றும் $3 x+6 y-5 z+4=0$ ஆகிய தளங்களுக்கிடையே உள்ள கோணம் __ ஆகும்.
(அ) $\frac{\pi}{4}$
(ஆ) $\frac{\pi}{2}$
(இ) $\frac{\pi}{3}$
(ஈ) π

The angle between the planes $2 x+4 y-6 z=1$ and $3 x+6 y-5 z+4=0$ is \qquad .
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) π

Page 4 Code No. : 20711 B
7. $(2,5,8)$ மற்றும் $(-1,6,3)$ ஆகிய புள்ளிகளை இணைக்கும் நேர்கோட்டின் சமன்பாடு ஆகும்.
(அ) $\frac{x-2}{3}=\frac{y+5}{-1}=\frac{z+8}{5}$
(ஆ) $\frac{x+2}{3}=\frac{y+5}{1}=\frac{z+8}{5}$
(இ) $\frac{x-2}{3}=\frac{y+5}{-1}=\frac{z-8}{5}$
(ஈ) ஏதுமில்லை
Equation of the straight line joining the points $(2,5,8)$ and $(-1,6,3)$ is \qquad -.
(a) $\frac{x-2}{3}=\frac{y+5}{-1}=\frac{z+8}{5}$
(b) $\frac{x+2}{3}=\frac{y+5}{1}=\frac{z+8}{5}$
(c) $\frac{x-2}{3}=\frac{y+5}{-1}=\frac{z-8}{5}$
(d) None
8. $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r \quad$ என்ற சமன்பாடு _ ஐ குறிக்கும்.
(அ) வட்டம்
(ஆ) நேர்கோடு
(இ) நீள்வட்டம்
(ஈ) அதிபரவளையம்

Page 5 Code No. : 20711 B
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$ is the equation of the
\qquad .
(a) Circle
(b) Straight line
(c) Ellipse
(d) Hyperbola
9. $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} \quad$ என்ற கோடு
$a x+b y+c z+d=0$ என்ற கோட்டிற்கு இணை எனில்
(அ) $a l+b m+c n=0$ மற்றும் $a x_{1}+b y_{1}+c z_{1} d \neq 0$
(ஆ) $a l+b m=0$ மற்றும் $a x_{1}+b y_{1}+c z_{1} d \neq 0$
(இ) $a l+b m+c n \neq 0$ மற்றும் $a x_{1}+b y_{1}+c z_{1} d=0$
(ஈ) $\quad a l+b m+c n \neq 0$ மற்றும் $a x_{1}+b y_{1}+c z_{1} d \neq 0$
The line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ is parallel to the plane $a x+b y+c z+d=0$ if
(a) $a l+b m+c n=0$ and $a x_{1}+b y_{1}+c z_{1} d \neq 0$
(b) $a l+b m=0$ and $a x_{1}+b y_{1}+c z_{1} d \neq 0$
(c) $\quad a l+b m+c n \neq 0$ and $a x_{1}+b y_{1}+c z_{1} d=0$
(d) $a l+b m+c n \neq 0$ and $a x_{1}+b y_{1}+c z_{1} d \neq 0$
10. $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$
$l x+m y+n z=p \quad$ சமன்பாடுகள் ___ யை குறிக்கும்.
(அ) ஒரு வட்டத்தைக் (ஆ) ஒரு உருளையைக்
(இ) ஒரு கூம்பபக் (ஈ) ஒரு பரவளையத்றைக்
The equation $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$, $l x+m y+n z=p$ represent \qquad .
(a) a circle
(b) a cylinder
(c) a cone
(d) a parabola

PART B $-(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (அ) தீர்க்க : $y=2 p x+y^{2} p^{3}$

Solve : $y=2 p x+y^{2} p^{3}$.
Or
(ஆ) தீர்க்க : $t d x=(t-2 x) d t$

$$
t d y=(t x+t y+2 x-t) d t
$$

Solve : $t d x=(t-2 x) d t$.

$$
t d y=(t x+t y+2 x-t) d t
$$

Page 7 Code No. : 20711 B
12. (அ) தீர்க்க : $\left(D^{4}+2 D^{2} n^{2}+n^{4}\right) y=\cos m x$.

Solve : $\left(D^{4}+2 D^{2} n^{2}+n^{4}\right) y=\cos m x$.
Or
(ஆ) தீர்க்க : $\left(D^{2}-8 D+9\right) y=8 \sin 5 x$.
Solve : $\left(D^{2}-8 D+9\right) y=8 \sin 5 x$.
13. (அ) $(2,5,-4),(1,4,-3),(4,7,-6)$ மற்றும் $(5,8,-7)$ ஆகிய புள்ளிகள் ஒரு இணைகரத்தைக் குறிக்கும் எனக் காட்டுக.

Show that the points $(2,5,-4),(1,4,-3)$, $(4,7,-6)$ and $(5,8,-7)$ are the vertices of a parallelogram.

Or
(ஆ) $A(3,5,-2), \quad B(2,2,0)$ மற்றும் $\quad C(5,11,-6)$ ஆகிய புள்ளிகள் ஒரே நேர்க்கோட்டில் அமையும் என நிரூபி.

Prove that the points $A(3,5,-2), B(2,2,0)$ and $C(5,11,-6)$ are collinear.
14. (அ) $2 x-3 y+6 z+12=0,2 x-3 y+6 z-2=0$ என்ற இரு இணையான தளங்களுக்கு இடையே உள்ள தூரத்தைக் காண்க.

Find the distance between the parallel planes
$2 x-3 y+6 z+12=0,2 x-3 y+6 z-2=0$.
Or
(ஆ) $\frac{x-3}{2}=\frac{y-2}{-5}=\frac{z-1}{3}$ மற்றும்
$\frac{x-1}{-4}=y+2=\frac{z-6}{2}$ ஆகிய கோடுகள் ஒரே
தளத்தில் அமையும் எனக் காட்டுக.
Show that the lines $\frac{x-3}{2}=\frac{y-2}{-5}=\frac{z-1}{3}$ and $\frac{x-1}{-4}=y+2=\frac{z-6}{2}$ are coplanar.
15. (அ) $(6,-1,2)$ என்ற புள்ளியை மையமாகவும் மற்றும் $2 x-y+2 z-2=0$ என்ற தளத்தை தொடும் கோளத்தின் சமன்பாட்டைக் காண்க.

Find the equation of the sphere which has its centre at the point $(6,-1,2)$ and touches the plane $2 x-y+2 z-2=0$.

Or

Page 9 Code No. : 20711 B

$$
\begin{array}{ll}
\text { (ஆ) } x^{2}+y^{2}+z^{2}+6 x+10 y+22 z=245, \\
x^{2}+y^{2}+z^{2}-12 x-14 y-18 z+141=0 & \text { ஆகிய } \\
\text { கோளங்கள் ஒன்றறயொன்று தொடும் } \\
\text { காட்டுக. தொடும் புள்ளியைக் கண்டுபிடி. }
\end{array}
$$

Show that the spheres
$x^{2}+y^{2}+z^{2}+6 x+10 y+22 z=245 ;$
$x^{2}+y^{2}+z^{2}-12 x-14 y-18 z+141=0 \quad$ touch each other. Find the point of contact.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (அ) தீர்க்க : $\frac{d x}{d t}+2 x-3 y=t$

$$
\frac{d y}{d t}-3 x+2 y=e^{2 t}
$$

Solve : $\frac{d x}{d t}+2 x-3 y=t$

$$
\frac{d y}{d t}-3 x+2 y=e^{2 t} .
$$

Or

Page 10 Code No. : 20711 B
(ஆ) தீர்க்க : $\frac{d^{2} x}{d \theta^{2}}+15 x+3 y=30$

$$
2 x+\frac{d^{2} y}{d \theta^{2}}+10 y+4=0
$$

Solve : $\frac{d^{2} x}{d \theta^{2}}+15 x+3 y=30$

$$
2 x+\frac{d^{2} y}{d \theta^{2}}+10 y+4=0 .
$$

17.

(அ)
தீர்க்க் : $\left(D^{2}+1\right) y=x^{2} e^{2 x}+x \cos x$
Solve : $\left(D^{2}+1\right) y=x^{2} e^{2 x}+x \cos x$.
Or
(ஆ) தீர்க்க : $\left(D^{2}+5 D+6\right) y=e^{-2 x}+\sin 4 x$.
Solve : $\left(D^{2}+5 D+6\right) y=e^{-2 x}+\sin 4 x$.
18. (அ) $\quad a l+b m+c n=0 ; \quad f m n+g n l+h l m=0$ ஆகியவற்றை திசைக்கொசைன்களாக கொண்ட நேர்கோடுகள் செங்குத்து எனில் $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$ மற்றும் இணை எனில் $\sqrt{a f}+\sqrt{b g}+\sqrt{c h}=0$ எனக் காட்டுக.

Page 11 Code No. : 20711 B

Show that the straight lines whose direction cosines are given by $a l+b m+c n=0$; $f m n+g n l+h l m=0$ are perpendicular if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0 \quad$ and \quad parallel if $\sqrt{a f}+\sqrt{b g}+\sqrt{c h}=0$.

Or
(ஆ) $\begin{array}{ll}\left(x_{1}, y_{1}, z_{1}\right) & \text { என்ற } \\ & a x+b y+c z+d=0 \quad \text { என்ற } \\ \text { செங்குத்து நீளத்ததக் காண்க. }\end{array}$ தளத்திற்கு உள்ள்து
Find the length of the perpendicular from the point $\left(x_{1}, y_{1}, z_{1}\right)$ on the plane $a x+b y+c z+d=0$.
19. (அ) $2 x-3 y+2 z+3=0$ என்ற தளத்தில்
$\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2}$ என்ற கோட்டிற்கான ஒப்புமைக் கோட்டின் சமன்பாட்டை காண்க.
Find the equations of the image of the line $\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2} \quad$ in the plane $2 x-3 y+2 z+3=0$.

Or

Page 12 Code No. : 20711 B

$$
\text { (ஆ) } \frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} ; \quad \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}
$$

ஆகிய கோடுகளுக்கு இடையே உள்ள குறுகிய தூரத்தைக் காண்க.

Find the shortest distance between the lines

$$
\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} ; \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2} .
$$

20. (அ) (a, b, c) என்ற நிலைப்புள்ளி வழியாக செல்லும் ஒரு தளம் ஆய அச்சுகளை $A, \quad B, C$-ல் வெட்டுகிறது. கோளம் $O A B C$-ன் மையத்தின் நியமப்பாதை $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$ எனக் காட்டுக.

A plane passes through a fixed point (a, b, c) and cuts the axes in A, B, C. Show that the locus of the center of the sphere $O A B C$ is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.

Or
(ஆ) மாறா ஆரம் k-ஐக் கொண்ட கோளம் மையப்புள்ளி வழியாக செல்லும் மற்றும் அச்சுக் கோடிகளை $A, \quad B, \quad C$-ல் சந்திக்கும் எனில் முக்கோணம் $A B C$-ன் மையக் கோட்டுச் சந்தி $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2} \quad$ என்ற கோளத்தின் மையப்பகுதியில் அமையும் என நிறுவுக.

A sphere of constant radius k passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
(6 Pages)
Code No. : 6831

Reg. No. : \qquad
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

First Semester
Mathematics - Core
ALGEBRA - I
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. In a quotient group $\frac{G}{N}, N$ is
(a) any proper subgroup of G
(b) a cyclic subgroup of G
(c) a normal subgroup of G
(d) a proper abelian subgroup of G
2. If $\phi: G \rightarrow \bar{G}$ is a homomorphism, then $\phi(a b c)=$
(a) $\quad \phi(a) \cdot \phi(b) \cdot \phi(c)$
(b) $\phi\left(\frac{a}{b}\right) \cdot \phi(b c)$
(c) $\quad \phi(a)+\phi(b) \phi(c)$
(d) none of these
3. Every group is isomorphic to a subgroup of the group of automorphisms $A(S)$ for some set S is due to
(a) Legrange
(b) Cayley
(c) Cayley Hamilton
(d) Sylow
4. If G is a group having 36 elements and H is a subgroup with 9 elements, then $i(H)=$
(a) 4 !
(b) 4
(c) 3
(d) 9 !
5. Product of seven even and four odd permutations is an - permutation.
(a) odd
(b) even
(c) either odd or even
(d) none
6. The group S_{n} has elements.
(a) n
(b) n !
(c) $\frac{n!}{2}$
(d) $n c_{2}$
7. The number of 2-Sylow subgroups of order 2 in S_{3} is
(a) 1
(b) 4
(c) 2
(d) 3
8. Any group of order 72 must have a normal subgroup and hence
(a) is simple
(b) not simple
(c) neither (a) nor (b)
(d) none of the above
9. The number of non-isomorphic abelian groups of order 3^{4} is
(a) 4
(b) 3
(c) 5
(d) 6
10. Number of 3 -sylow subgroup in a group of order 15 is
(a) 1
(b) 2
(c) 3
(d) 5

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Define cosets. Prove that the subgroup N of G is normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.

Or
(b) Define the terms homomorphism, $\operatorname{Ker} \phi$ and normal subgroup. Prove that if $\phi: G \rightarrow \bar{G}$ is a homomorphism, then $\operatorname{Ker} \phi$ is a normal subgroup of G.
12. (a) Define inner automorphism. Prove that $I(G) \cong \frac{G}{Z}$, where $I(G)$ is the group of inner automorphisms of G and Z is the centre of G .

Or
(b) What are the elements in the group of automorphisms of an infinite cyclic group?
13. (a) Define conjugacy and prove that conjugacy is an equivalence relation on G.

Or
(b) Define normalizer of an element in a group. Prove that it is a subgroup of G.

4 Code No. : 6831
[P.T.O]
14. (a) If A and B are finite subgroup of G then prove that $o(A \times B)=\frac{o(A) o(B)}{o\left(A \cap \times B x^{-1}\right)}$.

Or
(b) Prove that any group of order 72 has a nontrivial normal subgroup.
15. (a) Suppose that G is the internal direct product of $N_{1}, N_{2}, \ldots, N_{m}$. Then, for $i \neq j, N_{i} \cap N_{j}=(e)$ and. If $a \in N_{i}, b \in N_{j} ;$ then $a b=b a$.

Or
(b) If A and B are groups, prove that $A \times B$ and $B \times A$ are isomorphic.

$$
\text { PART C }-(5 \times 8=40 \mathrm{marks})
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) State and prove Sylow's theorem for abelian groups.

Or
(b) If H and K are finite subgroups of G of orders $o(H)$ and $o(K)$ respectively, then prove that $o(H K)=\frac{o(H) o(K)}{o(H \cap K)}$.
17. (a) If G is a finite group and $H \neq G$ is a subgroup of G such that $o(G) \nmid i(H)$!, then H must contain a non-trivial normal subgroup of G.

Or
(b) State and prove Cayley's theorem.
18. (a) State the prove Cauchy's theorem.

Or
(b) Prove that S_{n} has a normal subgroup of index 2 , the alternating group A_{n}, consisting of all even permutations.
19. (a) State and prove the second part of Sylow's theorem.

Or
(b) State Sylow's theorem and give the third proof.
20. (a) Prove that every finite abelian group is the direct product of cyclic groups.

Or
(b) Prove that two abelian groups of order p^{n} are isomorphic if and only if they have the same invariants.

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021
 FIRST SEMESTER
 MATHEMATICS - CORE
 ANALYSIS I
 (for those who joined in July 2017 onwards)
 Maximum: 75 marks
 Part - A ($10 \times 1=10$ marks $)$
 Answer all question, choose the correct answer:

Time : Three hours perfect c) compact d) open
2. If A and B are connected subsets of R with usual metric, then a) $A \cup B$ is connected b) $A \cup B$ is not connected c) $A \cup B$ is connected if and only if $A \cap B=\phi$ d) $A \cup B$ is connected if and only if
$A \cap B \neq \phi$
3. If $\left(a_{n}\right)$ is a sequence of positive terms and is such that $a_{n}>a_{n+1} \forall n$, then a) (a_{n}) is convergent b) $\left(a_{n}\right)$ is not convergent c$)\left(a_{n}\right)$ converges to 0 d$)$ None of the above
4. Let $\mathrm{p}>0 . \operatorname{Lim}_{n \rightarrow \infty}\left(\left(1-\frac{1}{n}\right)^{p}\right)=$ a) 0 b) 1 c) e d) -1
5. Let $a_{n} \geq 0 \forall n$ and $\alpha=\underset{n \rightarrow \infty}{\limsup }\left(\frac{a_{n+1}}{a_{n}}\right)$. $\sum_{n}^{n} a_{n}$ converges if $\alpha \quad$ a) $>1 \quad$ b) $=1 \quad$ c) $<1 \quad$ d) >0.
6. $\sum_{n} a_{n}$ converges. $\sum_{n>1} \frac{a_{n}}{\log n}$ a) need not converge b) diverges c) $\sum_{n} a_{n}=\sum_{n>1} \frac{a_{n}}{\log n}$ d) converges
7. Let $f: X \rightarrow Y$ be a monotonic decreasing function. Then the number of discontinuities of second kind is a) 0 b) has to be finite c) atmost countably infinite d) can be uncountably infinite
8. The function $f(x)=\left\{\begin{array}{cc}\sqrt{2} & \text { xis rational is discontinuous at a) of first kind at } \sqrt{2} \\ x & \text { othervise }\end{array}\right.$ b) of second kind at $\sqrt{2}$ c) of first kind at $\mathbb{R}-\{\sqrt{2}\} \quad$ d) of second kind at $\mathbb{R}-\{\sqrt{2}\}$
9. Let f be a differentiable function. Then the number of simple discontinuities of f^{\prime} is a) not finite b) 0 c) atmost countably infinite d) can be uncountably infinite
10. Let f be defined for all real numbers and suppose that for all real numbers x, y $|f(x)-f(y)| \leq(x-y)^{2}$, then a) f is constant b) f is monotonically increasing c) f is monotonically decreasing d) none of the above

Port. - B Answer (a) or (b) in each question ($5 \times 5=25$ marks)

11a) Define the terms open set, closed set. A set E is open if and only if its complement is closed. Prove.
b) Define closure \bar{E} of a set E. Prove that \bar{E} is the smallest closed set containing E . (or)

12a) If $p>0$ and α is real, prove that $\lim _{n \rightarrow \infty}\left(\frac{n^{i z}}{(1+p)^{n}}\right)=0$.
b) Define the terms convergent sequence and Cauchy sequence. Prove that convergence sequence is a Cauchy sequence and the converse holds if the space is compact.
13a) State and prove Merten's theorem. (or)
b) State and prove root test.

14a) Define discontinuities of first kind and second kind. Give examples. (Or)
b) i) Let X, Y be two metric spaces. Let $f: X \rightarrow Y$ be a continuous mapping. Then prove that $f(\bar{E}) \subseteq \overline{f(E)}$ for every subset E of X . ii) Also prove that this inclusion can be proper.
15a) State and prove Generalised mean value theorem. Also state Taylor's theorem (Or)
b) State and prove L'Hospital's rule.

Parti-T C Answer (a) or (b) in each question ($5 \times 8=40 \mathrm{marks}$)
16a) Define perfect set. Prove that any nonempty perfect set is uncountable. Deduce any interval in R is uncountable.
b) Let $E \subseteq \mathbb{R}^{k}$. Prove that the following statements are equivalent. i) E is closed and bounded ii) E is compact iii) Every infinite subset of E has a limit point in E. Deduce Weirstrass' theorem.
17a) i) Define a convergent series. ii) Suppose $a_{1} \geq a_{2} \geq \ldots \geq 0$. Then prove that the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}+\ldots$ converges. iii) Discuss the convergence of $\sum \frac{1}{n^{p}}$ for values of p.
b) i) Define the number e. ii) Prove that $2<\mathrm{e}<3$. iii) Prove that $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ iv) Prove that the number e is not rational

18a) i) Prove that for any sequence $\left\{c_{n}\right\}$ of positive numbers, $\limsup _{n \rightarrow \infty}\left(\left(c_{n}\right)^{\frac{1}{n}}\right) \leq \limsup _{n \rightarrow \infty}\left(\frac{c_{n+1}}{c_{n}}\right)$.
ii) Define the terms power series, radius of convergence of a power series iii) what is the relation between the convergence of a power series and its radius of convergence? Prove.
b) i) Define absolute convergence of a series. ii) Prove that absolute convergence implies convergence but not conversely. iii) If $\sum_{n} a_{n}=A ; \sum_{n} b_{n}=B ; \sum_{n} a_{n}$ converges absolutely and $c_{n}=\sum_{k=0}^{n} a_{n} b_{n-k}$, then prove that $\sum_{n} c_{n}=A B$.
19a) i) Define uniformly continuous function. ii) Prove that a continuous function defined on a compact metric space is uniformly continuous.
b) Let E be a noncompact set in R. Then prove that i) There exists a continuous function which is not bounded ii) There exists a continuous and bounded function which has no maximum. iii) If E is further bounded, then there exists a continuous function which is not uniformly continuous.
20a) i) State and prove Generalised mean value theorem. ii) Discuss the behaviour of f according as 1) $\left.\left.f^{\prime}(x) \geq 0 ; 2\right) f^{\prime}(x)=0 ; 3\right) f^{\prime}(x) \leq 0$. iii) Suppose f is real differentiable on $[\mathrm{a}, \mathrm{b}]$ and suppose $f^{\prime}(a)<\lambda<f^{\prime}(b)$, then there exists x such that $\mathrm{a}<\mathrm{x}<\mathrm{b}$ and $f^{\prime}(x)=\lambda$.
b) i) State and prove chain rule of differentiation. ii) Let f be defined as $f(x)=\left\{\begin{array}{cl}x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x=0)\end{array}\right.$. Prove that $f^{\prime}(0)$ does not exist. iii) Let f be defined as $f(x)=\left\{\begin{array}{cl}x^{2} \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x=0)\end{array}\right.$. Prove that $f^{\prime}(0)=0$.
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021

FIRST SEMESTER
MATHEMATICS - CORE
ANALYTIC NUMBER THEORY
(for those who joined in July 2017 onwards)
Time : Three hours
Part - A ($10 \times 1=10$ marks $)$
Answer all question, choose the correct answer:

1. $\operatorname{Gcd}(-6,-10)=$ (a) -2
(b) -10
(c) -6
(d) none of the above
2. If $(a, b)=1$, then $\left(a^{n}, b\right)=(a) 1$
(b) a
(c) b
(d) none of the above
3. $\sum_{d / A S s} \mu(d)=$
(a) 1 (b) 0
(c) 6
(d) none of the above
4. $(\mu * \phi)(8)=$
(a) 1 (b) 2
$\begin{array}{ll}\text { (c) } 3 & \text { (d) } 4\end{array}$
5. $\lambda^{-1}(5)=$ (a) 0
(b) 1
(c) 2
(d) -1
6. Which of the following statements is not true? (a) $I(n)$ is completely multiplicative (b) λ is multiplicative but not completely multiplicative (c) Only multiplicative function has dirichlet inverse (d) If f is multiplicative then $\mathrm{f}(1)=1$
7. Let f be any arbitrary function and $\mathrm{g}(\mathrm{x})>0$ for all $x \geq a$. Then $f(x)$ is asymptotic to
$\mathrm{g}(\mathrm{x})$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=$
(a) 0 (b) 1
(c) neither (a) nor (b) (d) none of the above
8. The number of lattice points in the region $\{x, y \in R:|x| \leq 2 ;|y| \leq 2\}$ (a) 4 (b) 8 (c) 16 (d) 25
9. $\lim _{x \rightarrow \infty} \sum_{u \leq x} \Lambda(n)=(a) 0$
(b) 1
(c) $\log x$
(d) none of the above
10. $x-[x]=$ (a) $\circ\left(\frac{1}{x}\right)$
(b) $0\left(\frac{1}{x^{2}}\right)$
(c) $\rho(x)$
(d) none of the above

Pork - B Answer (a) or (b) in each question ($5 \times 5=25$ marks)
11a) State and prove the division algorithm. State Euclidean algorithm (or)
b) (i) State and prove Euclid's lemma. (ii) State and prove the commutative, associative, and distributive properties of the ged of (a, b)
12a) State and prove the relation between Euler totient function and the Mobius function.
b) Prove that $\frac{n}{\varphi(n)}=\sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}$.

13a) Define Mobius function. Is the Mobius function multiplicative or completely multiplicative? Justify your answer.
b) Assume f is multiplicative. Prove that (i) $f^{-1}(n)=\mu(n) f(n)$ where n is square free. (ii)
$f^{-1}\left(p^{2}\right)=(f(p))^{2}-f\left(p^{2}\right)$ for every prime p. .
14a) State and prove the Euler summation formula
b) If $\beta>0$ let $\delta=\max \{0,1-\beta\}$. then if $x>1$, prove that $\sum_{n \leq x} \sigma_{-\beta}(n)=\zeta(\beta+1) x+$ $O\left(x^{\delta}\right)$ if $\beta \neq 1 ;=\zeta(2) x+O(\log x)$ if $\beta=1$

15a) Prove that (i) for all $x \geq 1 ;\left|\sum_{n \leq x} \frac{\mu(n)}{n}\right| \leq 1$ with equality holding only if $x<2$. (ii) For $x \geq 2$ prove that $\sum_{p \leq x}\left[\frac{x}{p}\right] \log p=x \log x+O(x)$
b) State and prove Abel's identity.

$$
\text { Par t-C Answer (a) or (b) in each question (} 5 \times 8=40 \mathrm{marks} \text {) }
$$

16a) Given integers a and b, prove that there is a unique number d with the following properties: (a) $d \geq 0$; (b) $d \mid a$ and $d \mid b$; (c) $e \mid a$ and $e|b \Rightarrow e| d$
b) i) State and prove the fundamental theorem of arithmetic. ii) prove that $n^{4}+4$ is composite 17a) For $n \geq 1$ prove that $\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$. If the same primes divides m and n, then $n \varphi(m)=m \varphi(n)$
b) Define the Euler totient function and prove that if $n \geq 1 \sum_{d \mid n} \varphi(d)=n$

18a) State and prove the associative property relating \circ and $*$ and the generalized inversion formula and generalized Mobius inversion formula.
(or)
b) i) let f be multiplicative. Then f is completely multiplicative if and only if $f^{-1}(n)=\mu(n) f(n)$ for all $n \geq 1$ ii) Find the inverse of the Euler totient function and Liuvelle's function.
19a) If $x \geq 1$ prove that (i) $\sum_{n s x} 1 / n=\log x+C+O\left(\frac{1}{x}\right)$ (ii) $\sum_{n \leq x} 1 / n^{s}=\frac{x^{1-s}}{1-s}+\zeta(s)+$ $O\left(x^{-s}\right)$ if $s>0$ and $s \neq 1$ (iii) $\sum_{n>x} \frac{1}{n^{s}}=O\left(x^{1-s}\right)$ if $s>1 \quad$ (iv) $\sum_{n s x} n^{\alpha}=\frac{x^{\alpha+1}}{\alpha+1}+$ $O\left(x^{\alpha}\right)$ if $\alpha \geq 0$
b) (i) Two lattice points (a, b) and (m, n) are mutually visible if and only if a-m and b-n are relatively prime (ii) The set of lattice points visible from the origin has density $\frac{6}{\pi^{2}}$
20a) Prove that (i) $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1 \Leftrightarrow$ (ii) $\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1 \Leftrightarrow$ (iii) $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$
b) For every integer $n \geq 2$ prove that $\frac{1}{6} \frac{n}{\log n}<\pi(n)<6 \frac{n}{\log n}$

Reg. No. :
Sub. Code: PMAM14

Code No: 6834
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021

FIRST SEMESTER
MATHEMATICS - CORE
ORDINARY DIFFERENTIAL EQUATIONS
(For those who joined in July 2017 onwards)
Time: Three hours
Maximum : 75 marks
PART $A-(10 \times 1=10$ marks $)$
Answer ALL questions, Choose the correct answer

1. If $y_{1}(x)$ and $y_{2}(x)$ are two solutions $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then $W=$
(a) $c e^{-S P d x}$
(b) $c e^{-S Q d x}$
(c) $c e^{+S P d x}$
(d) $c e^{+S Q d x}$
2. Two linearly independent solutions of $y^{\prime \prime}-y=0$ are
(a) 1 and e^{x}
(b) 1 and e^{-x}
(c) e^{x} and e^{-x}
(d) None
3. The equation $y^{\prime}=y$ has a power series solution with radius of convergence R where
(a) $R>0$
(b) $R<0$
(c) $R=0$
(d) None
4. The particular solution of
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$ where p is a
constant is known as
(a) Bessels equation
(b) Legendre equation
(c) Hermite equations
(d) AIRY's equation
5. The singular point of $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$ is
(a) 1
(b) ∞
(c) 0
(d) -1
6. The Rodriques formula $p_{n}(x)=$ is
(a) $\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[x^{2}-1\right]^{n}$
(b) $\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[x^{2}+1\right]^{n}$
(c) $\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[x^{2}-1\right]^{n}$
(d) $\frac{!}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[x^{2}+1\right]^{n}$

Page 2
7. The value of $J_{y 2}(x)$ is
(a) $\sqrt{\frac{2}{\pi x}} \sin x$
(b) $\sqrt{\frac{2}{\pi x}} \cos x$
(c) $\sqrt{\frac{2}{\pi x}} \tan x$
(d) None
8. The famous $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ whose sum was discovered by
(a) Newton
(b) Euler
(c) Bessel
(d) Legendre
9. The vanishing or non vanishing of the Wronskian $w(t)$ of two solutions \qquad on the circle of t.
(a) Depends
(b) Does not depend
(c) Either (a) or (b)
(d) None
10. By solving the linear systems using auxillary equation. If m_{1} and m_{2} all distinct real numbers then the roots are
(a) Same
(b) Distinct
(c) Trivial
(d) None

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, by choosing either (a) or (b).
11. (a) If $y_{1}(x)$ and $y_{2}(x)$ are any two solutions of the equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \quad$ on $\quad[a, b]$. Then prove that $W=W\left(Y_{1}, Y_{2}\right)$ is either identically zero or never zero on $[a, b]$.

Or

(b) The equation $y^{\prime \prime}-y=0$ has a solution $y_{1}=e^{x}$. Find y_{2} and the general solution.
12. (a) Find a power series solution of the equation $y^{\prime}=y$.

> Or
(b) Find the general solution of $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$ interms of power series.
13. (a) Find the indicial equation and its roots the equation $x^{3} y^{\prime \prime}+(\cos 2 x-1) y^{\prime}+2 x y=0$.

Or

(b) Find the first three terms of the Legendre series $f(x)=e^{x}$.
14. (a) Prove that: $\frac{d}{d x}\left[J_{0}(x)\right]=-J_{1}(x)$.

Or
(b) Show that: $\frac{d}{d x}\left[x J_{1}(x)\right]=x J_{0}(x)$.
15. (a) Prove that if the solutions of the homogeneous system are linearly independent on $[a, b]$. Then the system is the general solution of homogeneous solution of this interval.

Or

(b) Find the general solution of $\frac{d x}{d t}=2 x$, $\frac{d y}{d t}=3 y$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, by choosing either (a) or (b).
16. (a) Show that $y=c_{1} e^{x}+e_{2} e^{2 x}$ is the general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=0$ on any interval and find the particular solution for which $y(0)=1$ and $y^{\prime}(0)=1$.

Or
(b) If y_{1} is a non zero solution of the equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ and $y_{2}=v y_{1}$, where v is given by the formula $v=\int \frac{1}{y_{1}^{2}} e^{-\int p d x} d x$ is the second solution. Show by computing the Wronkian that y_{1} and y_{2} are linearly independent.
17. (a) Show that $y=(1+x)^{p}$ is a power series solution of the equation $(1+x) y^{\prime}=p_{y}, y(0)=1$.

Or
(b) Frind the general solution of $\left(1-x^{2}\right) y^{\prime \prime} \cdots 2 x y^{\prime}+$ $p(p+1) y \cdots 0$, where p is a constant.
18. (a) Show that the indicial equation of the equation $x^{\prime 2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ has only one root and prove that $y=\sum_{n=0}^{\infty} \frac{(1)^{n}}{2^{2 n}(n!)^{2}} x^{2 n}$.

Or
(b) Show that :

$$
\int_{-1}^{1} p_{m}(x) p_{n}(x) d x=\left\{\begin{array}{cll}
0 & \text { if } & m \neq n \\
\frac{2}{2 n+1} & \text { if } & m=n
\end{array}\right.
$$

19. (a) Prove that $J_{-m}(x)=(-1)^{m} J_{m}(x)$.
Or
(b) Prove that

$$
\int_{0}^{1} x J_{p}\left(\lambda_{m} x\right) J_{p}\left(\lambda_{n} x\right) d x\left\{\begin{array}{ccc}
0 & \text { if } & m \neq n \\
\frac{1}{2} J_{p, 1}\left(\lambda_{n}\right)^{2} & \text { if } & m=n
\end{array}\right.
$$

20. (a) Show that the Wronskian of the two solutions in distinct complex roots is given by $w(t)=\left(A_{1} B_{2}-A_{2} B_{1}\right) e^{2 a t}$ and prove that $A_{1} B_{2}-A_{2} B_{1} \neq 0$.

Or

(b) Find the general solution of

$$
\frac{d x}{d t}=3 x-4 y, \frac{d y}{d t}=x-y .
$$

\qquad

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021
 FIRST SEMESTER
 MATHEMTICS
 NUMERICAL ANALYSIS
 (for those who joined in July 2017 onwards)

Time 3 hrs
Max: 75 Marks

$$
\text { PART }-\mathrm{A}(10 \times 1=10 \text { Marks })
$$

Answer all questions choose the correct answer

1. \qquad is the processes of finding the most appropriate estimate for missing data .
a) Extrapolation
b) Numerical
c) Integration
d) Interpolation
2. \qquad difference interpolation formula is used to find the missing value near the central value of the table.
a) Divided
b) mean value
c) Central
d) backward
3. The maxima and minima of $f(x)$ can be obtained by equating the first derivative to \qquad
a) 1
b) 0
c) 2
d) -1
4. Given $u_{0}=5 ; u_{1}=15 ; u_{2}=57$; and $d u / d x=4$ at $x=0$ and 72 at $x=2$ then $\Delta^{3}\left(u_{0}\right)=$ \qquad .
a) 48
b) 44
c) 40
d) 38
5. The process of evaluating a definite integral from a set of the integrand $f(x)$, is called \qquad
a) numerical integration
b) numerical differentiation
c) divided difference
d) transposition
6. The error in trapezoidal rule is of order \qquad
a) H
b) h^{2}
c) h^{3}
d) h^{-1}
7. \qquad method is the Runge-kutta method of first order.
a) Trapezoidal
b) Simpson's
c) Euler's
d) sylow
8. $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ is \qquad formula.
a) Trpezoidal's
b) Simpson's
c) R-K method
d) Euler's
9. The technique of refining an initially crude estimate is called \qquad .
a) Euler
b) Modified Euler
c) R-K method
d) Predictor-Correctorr
10. To apply a predictor corrector method we need \qquad starting values of y.
a) 1
b) 2
c) 4
d) -1 .

$$
\text { PART - B (} 5 \times 5=25 \text { Marks })
$$

Answer All questions choosing either ' a ' or ' b '
11.a) If $y(75)=246, y(80)=202, y(85)=118, y(90)=40$ then find $y(79)$.
(OR)
b) Form the central difference table for the data given below choosing $=35$ as origin.

x	20	25	30	35	40	45
y	12	15	20	27	39	52

12.a) Find $y^{\prime}(x)$ using the given table and also find $y^{\prime}(x)$ at $x=0.5$

x	0	1	2	3	4
y	1	1	15	40	85

b) Derive the first and second derivatives using the Newton's forward difference formula.
13.a) Derive the formula for Simpson's one third rule.
b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$. Using trapezoidal rule with $\mathrm{h}=0.2$.
14.a) Using Euler's method solve $\frac{d y}{d x}=1-\mathrm{y} y(0)=0$ Find y at $\mathrm{x}=0.1$ and
0.2 . Compare the numerical solution with the exact solution.
b) Derive the formula for the second order R-K method .
15. a) Given $\frac{d y}{d x}=\frac{1}{x+y} ; y(0)=2$. If $\mathrm{y}(0.2)=2.09, \mathrm{y}(0.4)=2.17, \mathrm{y}(0.6)=$
2.24 find $\mathrm{y}(0.8)$ using Milne's method. (OR)
b) Using Adam's Bashforth method find $\mathrm{y}(0.4)$ given that $\mathrm{y}^{\prime}=1+\mathrm{xy}$, $y(0)=2$.

$$
\text { PART }- \text { C (} 5 \times 8=40 \text { Marks })
$$

Answer all Questions choosing either 'a or ' b '
16.a) Derive Bessel's formula. (OR)
b) Use Lagrange's interpolation formula to fit a polynomial to the data.

x	0	1	3	4
y	-12	0	6	12

17. a) A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of time $t(\mathrm{sec})$. Calculate the angular velocity and the angular acceleration of the rod when $t=$ 0.6 sec

t	0	0.2	0.4	0.6	0.8	1.0
θ	0	0.12	0.49	1.12	2.02	3.20

(OR)
b) Find the maximum and minimum value of y from the following table

x	0	1	2	3	4	5
y	0	0.25	0	$9 / 4$	16	$225 / 4$

18.a) A curve passes through the points as given in the table. i) Find the area bounded by the curve, the x-axis, $x=1$ and $x=9$. ii) the volume of the solid generated by revolving this area about the x-axis.

x	1	2	3	4	5	6	7	8	9
y	0.2	0.7	1	1.3	1.5	1.7	1.9	2.1	2.3

(OR)
b) Derive Newton's quadrature formula.
19.a) Using Taylor's method find $y(0.1)$ correct to 3 decimal places from $\frac{d y}{d x}+2 \mathrm{xy}=1, \mathrm{y}_{0}=0 . \quad$ (OR)
b) Using picard's method solve $\frac{d y}{d x}=1+\mathrm{xy}, \mathrm{y}(0)=2$. Find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $y(0.3)$
20.a) Using Adams Bashforth method, determine $y(1.4)$ given that $y^{\prime}-x^{2} y=x^{2}, y(1)=1$. Obtain the starting values from Euler method. (OR)
b) Find $y(0.8)$ by Milne's method for the equation $y^{\prime}=y-x^{2}, y(0)=1$ obtaining the starting values by Taylor's series method.

Reg. No. : \qquad

Code No. : 6836

Sub. Code : PMAM 21
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core
ALGEBRA - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks PART A - ($10 \times 1=10$ marks $)$

Answer ALL questions.
Choose the correct answer.

1. The number of ideals of the set of all rational numbers is \qquad .
(a) 1
(b) 2
(c) 0
(d) none of the above
2. Suppose γ is a real number $0 \leq \gamma \leq 1$, $M_{\gamma}=\{f(x) \in R \mid f(\gamma)=0\}$ is a __ ideal of R.
(a) Left ideal
(b) Right ideal
(c) Prime ideal
(d) Maximal ideal
3. The number of units in the ring of integers is
\qquad .
(a) 1
(b) 2
(c) 0
(d) none of the above
4. The gcd of $3+4 i$ and $4-3 i$ in $J[i]$ is \qquad .
(a) $2-i$
(b) $2+i$
(c) $1+2 i$
(d) none of the above
5. The content of the polynomial $x^{6}-6 x+1$ is
\qquad .
(a) 0
(b) 1
(c) 2
(d) none of the above
6. Which of the following is the unique factorization domain?
(a) Z
(b) $Z(\sqrt{-5})$
(c) (a) and (b)
(d) no one of the above
7. The only idempotent element is $\operatorname{rad} R$ is
(a) 0
(b) 1
(c) 2
(d) none of the above

Page $2 \quad$ Code No. : 6836
8. Let $F[(x)]$ be the ring of formal power series over a field F. Then $\operatorname{rad} F[[x]]=$ \qquad
(a) (0)
(b) (1)
(c) (x)
(d) none of the above
9. A ring R is subdirectly irreducible if and only if the heart of R is not equal to \qquad -.
(a) $\{1\}$
(b) $\{0\}$
(c) R
(d) None of the above
10. If $R^{\wedge} \neq\{0\}$, then the annihilator of the set of zero divisors of R is \qquad .
(a) R
(b) $\{0\}$
(c) R^{\wedge}
(d) None of the above

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If ϕ is a homomorphism of R into R^{\prime} with kernel $I(\phi)$, then prove that (i) $I(\phi)$ is a subgroup of R under addition, (ii) If $a \in I(\phi)$ and $r \in R$ then both $a r$ and $r a$ are in $I(\phi)$.

Or
(b) If U is an ideal of the ring R, then prove that R / U is a ring and is a homomorphic image of R.

Page $3 \quad$ Code No. : 6836
12. (a) Let R be a Euclidean ring. Then any two elements a and b in R have a greatest common divisor d. Moreover $d=\lambda a+\mu b$ for some $\lambda, \mu \in R$. Prove.

Or
(b) Let R be a Euclidean ring and $a, b \in R$. If $b \neq 0$ is not a unit in R, then $d(a)<d(a b)$.
13. (a) State and prove the Gauss lemma.

Or

(b) Define primitive polynomial and prove that if $f(x)$ and $g(x)$ are primitive polynomials, then $f(x) g(x)$ is a primitive polynomial.
14. (a) Let I be an ideal of R. Then prove that $I \subseteq \operatorname{rad} R$ if and only if each element of the coset $1+I$ has an inverse in R.

Or
(b) For any ring R, prove that the quotient ring $R / \operatorname{Rad} R$ is without prime radical.

Page $4 \quad$ Code No. : 6836
[P.T.O.]
15. (a) For any ring R, the J-radical $J(R)$ is an ideal of R.

Or
(b) An element $a \in R$ is quasi-regular if and only if $a \in I_{a}$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that every integral domain can be imbedded in a field.

Or
(b) Let R and R^{\prime} be rings and ϕ a homomorphism of R onto R^{\prime} with kernel U. Then R^{\prime} is isomorphic to R / U. Moreover there is one-toone correspondence between the set of ideals of R^{\prime} and the set of ideals of R which contain U. This correspondence can be achieved by associating with an ideal W^{\prime} in R; the ideal W in R defined by $W=\left\{x \in R \mid \phi(x) \in W^{\prime}\right\}$. With W so defined, R / W is isomorphic to R^{\prime} / W^{\prime}. Prove.

Page $5 \quad$ Code No. : 6836
17. (a) Define Euclidean ring and prove that $J[i]$ is an Euclidean ring.

Or

(b) If p is a prime number of the form $4 n+1$ then $p=a^{2}+b^{2}$ for some integers a and b.
18. (a) State and prove the Eisenstein criterion.

Or

(b) Define unique factorization domain and prove that if R is a unique factorization domain then so is $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
19. (a) Let I be an ideal of the ring R. Further, assume that the subset $S \subseteq R$ is closed under multiplication and disjoint from I. Then prove that there exits an ideal P which is maximal in the set of ideals which contain I and do not meet S; any such ideal is necessarily prime.

Or

(b) If I is an ideal of the ring R, then (i) $\operatorname{rad}(R / I) \supseteq \frac{\operatorname{rad} R+I}{I}$ and (ii) whenever $I \subseteq \operatorname{rad} R, \operatorname{rad}(R / I)=(\operatorname{rad} R) / I$.

Page $6 \quad$ Code No. : 6836
20. (a) A ring R is isomorphic to a subdirect sum of rings R_{i} if and only if R contains a collection of deals $\left\{I_{i}\right\}$ such that $R / I_{i} \simeq R_{i}$ and $\bigcap I_{i}=\{0\}$.

Or

(b) Let $I_{1}, I_{2}, \ldots ., I_{n}$ be a finite set of ideals of the ring R. If $I_{i}+I_{j}=R$ whenever $i \neq j$, then $R / \bigcap I_{i} \simeq \Sigma \oplus\left(\frac{R}{I_{i}}\right)$.

Page $7 \quad$ Code No. : 6836

Reg. No. : \qquad

Code No. : 6837

Sub. Code : PMAM 22

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core
ANALYSIS - II
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer.

1. If $f \in \mathbb{R}(\alpha)$ and $g \in \mathbb{R}(\alpha)$ on $[a, b]$ then $f g \in$
(a) $\mathbb{R}^{2}(\alpha)$
(b) $\mathbb{R}(\alpha)$
(c) $\mathbb{R}\left(\alpha^{2}\right)$
(d) None of these
2. $f \in \mathbb{R}(\alpha)$ if
(a) f is continuous on $[a, b]$
(b) f is monotonic on $[a, b]$
(c) f is bounded on $[a, b]$
(d) none of these
3. $\quad \lim _{m \rightarrow \alpha} \lim _{n \rightarrow \alpha}(\cos (m!\pi x))^{2 n}=$
(a) 0
(b) 1
(c) -1
(d) none of these
4. Let $\quad f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n} \quad(0 \leq x \leq 1, n=1,2,3, \ldots)$. Then $\frac{1}{2}$ is the value of
(a) $\lim _{n \rightarrow \alpha} f_{n}(x)$
(b) $\lim _{n \rightarrow \alpha} \int_{0}^{1} f_{n}(x) d x$
(c) $\int_{0}^{1}\left(\lim _{n \rightarrow \alpha} f_{n}(x)\right) d x$
(d) none of these
5. If A has the property that $f \in \mathcal{A}$ whenever $f_{n} \in A$ $(n=1,2,3, \ldots)$ and $f_{n} \rightarrow f$ uniformly on E, then A is said to be
(a) uniformly closed
(b) pointwise closed
(c) closed
(d) none of these
6. $\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x$ is
(a) less than $\frac{1}{\sqrt{n}}$
(b) equal to $\frac{1}{\sqrt{n}}$
(c) greater than $\frac{1}{\sqrt{n}}$
(d) none of these
7. Let K be compact and let $f_{n} \in \zeta(K) \quad n=1,2,3, \ldots$. . $\left\{f_{n}\right\}$ contains a uniformly convergent subsequence is \qquad -.
(a) $\left\{f_{n}\right\}$ is pointwise bounded
(b) $\left\{f_{n}\right\}$ is equicontinuous on K
(c) Both (a) and (b) are true
(d) Neither (a) nor (b) is true
8. Suppose the series $\sum_{0}^{\infty} C_{n} x^{n}$ converges for $\|x\|<R$ then $\sum_{1}^{\infty} n C_{n} x^{n-1}$ converges in
(a) $\left(-\frac{1}{R}, \frac{1}{R}\right)$
(b) $(-2 R, 2 R)$
(c) $\quad(-R, R)$
(d) None of these

Page $3 \quad$ Code No. : 6837
9. $\quad \overline{\left(\frac{1}{2}\right)}=$
(a) π
(b) $\sqrt{\pi}$
(c) $\sqrt{\frac{\pi}{2}}$
(d) $\frac{\pi}{2}$
10. The sequence of complex functions $\left\{\phi_{n}\right\}$ is said to be orthonormal if
(a) $\int_{a}^{b} \phi_{n}(x)^{2} d x=1$
(b) $\int_{a}^{b} \phi_{n}(x) d x=1$
(c) $\int_{a}^{b}\left|\phi_{n}(x)\right|^{2} d x=1$
(d) $\int_{a}^{b} \phi_{n}^{2}(x) d x=1$

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) State and prove fundamental theorem of Calculus.

Or

(b) Prove that $f \in \mathbb{R}(\alpha)$ on [a,b] if and only if for every $\varepsilon>0$ there exists a partition P such that $U(P \subset f \subset \alpha)-L(P \subset f \subset \alpha)<\varepsilon$.

Page $4 \quad$ Code No. : 6837
[P.T.O.]
12. (a) Prove that the limit of the integral need not be equal to the integral of the limit even if both are finite.

Or
(b) State and prove the Cauchy Criterion for Uniform Convergence.
13. (a) Let α be monotonically increasing on [$a, b]$. Suppose $f_{n} \in \mathbb{R}(\alpha)$ on $[a, b]$ for $n=1,2,3, \ldots$ and suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$, prove that $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$.

Or
(b) If K is a compact metric space, if $f_{n} \in \zeta(K)$ for $n=1,2,3, \ldots$ and if $\left\{f_{n}\right\}$ converges uniformly on K then show that $\left\{f_{n}\right\}$ is equicontinuous on K.
14. (a) Let \mathcal{O} be the uniform closure of an algebra A of bounded functions. Then show that \mathcal{O} is a uniformly closed algebra.

Or
(b) Suppose ΣC_{n} converges. Put $f(x)=\sum_{n=0}^{\infty} C_{n} x^{n}$
$(-1<x<1)$. Then show that $\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} C_{n}$.

Page $5 \quad$ Code No. : 6837
15. (a) If $f(x)=0$ for all x in some segment J then show that $\lim S_{N}(\rho: x)=0$ for every $x \in J$.

Or
(b) If $x>0$ and $y>0$ then show that
$\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Suppose $f \in \mathscr{R}(\alpha)$ on $[a, b], m \leq f \leq M, \phi$ is continuous on $[m, M$] and $h(x)=\phi(f(x))$ on $[a, b]$. Then show that $h \in \mathbb{R}(\alpha)$ on $[a, b]$.

Or
(b) Assume α is increased monotonically and $\alpha^{\prime} \in \mathbb{R}$ on $[a, b]$. Let f be a bounded real function on $[a, b]$. Then prove that $f \in \mathbb{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathbb{R}$ and $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
17. (a) Suppose $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on $[a, b]$ and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f_{n}{ }^{\prime}\right\}$ converges uniformly on $[a, b]$, then show that $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, to a function f, and $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)(a \leq x \leq b)$.

Or
(b) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
18. (a) If γ^{\prime} is continuous on $[a, b]$ then prove that γ is rectifiable and $\Lambda(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t) d t\right|$.

Or

(b) Let $\left\{f_{n}\right\}$ be a sequence of functions such that $f_{n} \rightarrow f$ uniformly on E in a metric space. Let x be a limit point of E. Then show that $\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)$.

Page $7 \quad$ Code No. : 6837
19. (a) State and prove the Stone-Weierstrass theorem.

Or
(b) Given a double sequence $\left\{a_{i j}\right\}(i=1,2,3, \ldots)$, $(j=1,2,3, \ldots), \quad$ suppose that $\sum_{j=1}^{\infty}\left|a_{i j}\right|=b_{i}$ $(i=1,2,3, \ldots)$ and Σb_{i} converges. Then prove that

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a i j=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a i j .
$$

20. (a) State and prove Parseval's Theorem.

Or
(b) Define gamma function. Prove that if f is a positive function on $(0, \infty)$ such that (i) $f(x+1)=x f(x)$ (ii) $f(1)=1$ (iii) $\log f$ is convex then show that $f(x)=\Gamma(x)$.

Page $8 \quad$ Code No. : 6837

Reg. No. : \qquad

Code No. : 6838

Sub. Code : PMAM 23
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core

CLASSICAL MECHANICS

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks PART A - ($10 \times 1=10$ marks $)$

Answer ALL questions.
Choose the correct answer.

1. The moment of force about 0 is defined by $\mathrm{N}=$
\qquad _.
(a) $\mathrm{r} \cdot \mathrm{F}$
(b) $r \times F$
(c) $r \times P$
(d) None
2. The scalar quantity $m v^{2} / 2$ is called the
\qquad .
(a) Kinetic energy
(b) Potential energy
(c) Torque
(d) Mass
3. The Lagrangian function $\mathrm{L}=$ \qquad .
(a) $\mathrm{T}-\mathrm{V}$
(b) $\mathrm{T}+\mathrm{V}$
(c) TV
(d) $\mathrm{T} \div \mathrm{V}$
4. The equation of motion is \qquad .
(a) $F_{i}-p_{i}=0$
(b) $F_{i}-t_{i}$
(c) $F_{i} \delta r_{i}$
(d) $F_{i j}$
5. Generalized momentum conjugate to a cyclic co-ordiante is \qquad .
(a) conserved
(b) variable
(c) zero
(d) none
6. Curves that give the shortest distance between two points on a given surface are called the
\qquad of the surface.
(a) perpendicular
(b) geodesics
(c) torque
(d) mass
7. Conservation of total energy $\mathrm{T}+\mathrm{V}=$ \qquad .
(a) 0
(b) 1
(c) constant
(d) none

Page $2 \quad$ Code No. : 6838
8. All point transformations are \qquad .
(a) canonical
(b) non-canonical
(c) both
(d) none
9. The potential force under inverse square law of force is \qquad -.
(a) $-\frac{K}{r^{2}}$
(b) $-\frac{K}{r}$
(c) Kr
(d) $K r^{2}$
10. The nature of orbit when $e=1$ and $E=0$ is
\qquad —.
(a) elliptic
(b) parabola
(c) hyperbola
(d) circle

PART B-($5 \times 5=25$ marks $)$
Answer ALL questions, by choosing either (a) or (b).
11. (a) State and prove conservation theorem for total angular momentum.

Or

(b) Prove that if the total force F is zero then $P=0$ and the linear momentum P is conserved.

Page $3 \quad$ Code No. : 6838
12. (a) Derive D'Alembert principle.

Or
(b) Write about the Atwood's machine.
13. (a) Explain about the Brachistochrone problem.

Or
(b) Show that the minimum surface of revolution is a catenary.
14. (a) Find the total number of integral exponents resulting in elliptic functions.

Or
(b) Prove that the central force motion of two bodies about their centre of mass can always be reduced to an equivalent one body problem.
15. (a) Derive the Kepler's equation $w t=\psi-e \sin \psi$.

Or
(b) Derive the condition $E=\frac{-m K^{2}}{2 e^{2}}$ for circular motion.

Page $4 \quad$ Code No. : 6838
[P.T.O.]

$$
\text { PART C }-(5 \times 8=40 \mathrm{marks})
$$

Answer ALL questions, by choosing either (a) or (b).
16. (a) State and prove conservation theorem for the angular momentum of a particle.

Or
(b) Show that for a single particle with constant mass the equation of motion implies the following differential equation for the kinetic energy $\frac{d T}{d t}=F \cdot V$ while if the mass varies with time the corresponding equation is $\frac{d(m T)}{d t} F \cdot P$.
17. (a) Derive Lagrange's equation from DAlembert's principle.

Or

(b) Derive equation of motion interms of Lagrangian and Dissipation function.
18. (a) Find the shortest distance between two points in a plane.

Or

(b) Derive Lagrange's equation from Hamilton's principle for nonholonomic system.

Page $5 \quad$ Code No. : 6838
19. (a) Discuss about the equivalent one dimensional problem.

Or
(b) State and prove viral theorem.
20. (a) Discuss Kepler Problem.

Or
(b) Explain about Laplace Runge Lenz Vector.

Page $6 \quad$ Code No. : 6838

Reg. No. : \qquad

Code No. : 6839

Sub. Code : PMAM 24

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core

DIFFERENTIAL GEOMETRY

(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The equation of the rectifying plane at a point u of the circular Helix $r(u)=(a \cos u, a \sin u, b u)$ is
(a) $X \cos u+Y \sin u-a=0$
(b) $X \cos u+Y \sin u+a=0$
(c) $X \cos u-Y \sin u+a=0$
(d) $X \cos u+Y \sin u-b=0$
2. The curvature of the circle $x^{2}+y^{2}=25$ is
(a) 0
(b) 5
(c) 25
(d) 115
3. A necessary and sufficient condition for a curve to be a Helix is
(a) curvature is a constant
(b) torsion is a constant
(c) torsion is zero
(d) ratio of curvature to torsion is constant
4. The position vector of the center of the oscillating sphere is
(a) $c=r+\rho n+\sigma b$
(b) $c=r+\rho n+\tau b$
(c) $c=r+\rho n+\rho^{\prime} \sigma b$
(d) $c=r+\rho n+\rho^{\prime} \tau b$
5. The direction coefficients of the parametric directions are respectively
(a) $(1 / \sqrt{E}, 0),(0,1 / \sqrt{G})$
(b) $(1 / E, 0),(0,1 / G)$
(c) $(-1 / \sqrt{E}, 0),(0,1 / \sqrt{G})$
(d) $(1 / \sqrt{E}, 0),(0,-1 / \sqrt{G})$

Page $2 \quad$ Code No. : 6839
6. If $r=\left(u, v, u^{2}-v^{2}\right)$ is the position vector of any point on the paraboloid, then the value of H^{2} is
(a) $1+4 u^{2}+4 v^{2}$
(b) $1-4 u^{2}+4 v^{2}$
(c) $1+4 u^{2}-4 v^{2}$
(d) $1-4 u^{2}-4 v^{2}$
7. Every space curve is a geodesic on its
(a) rectifying developable
(b) osculating developable
(c) polar developable
(d) ellipsoid
8. If $\Gamma_{i j k}, i, j, k=1,2$ are Christoffel symbols of the first kind, then Γ_{111} is
(a) $E_{1} / 2$
(b) $E_{2} / 2$
(c) $G_{1} / 2$
(d) $G_{2} / 2$
9. If L, M, N vanish at all points on a surface, then the surface is a
(a) right helicoid
(b) sphere
(c) cone
(d) plane

Page $3 \quad$ Code No. : 6839
10. The Gaussian curvature of the surface $r=(a(u+v), b(u-v), u v)$ is
(a) $4 a^{2} b^{2} / H^{4}$
(b) $-4 a^{2} b^{2} / H^{4}$
(c) $4 a^{2} b^{4} / H^{4}$
(d) $-4 a^{2} b^{4} / H^{4}$

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If u is the parameter of the curve r, then the equation of the oscillating plane at any point P with position vector $\bar{r}=\bar{r}(u)$ is $[R-r, \dot{r}, \ddot{r}]=0$.

Or
(b) Find the curvature and torsion of $r=(a \cos \theta, a \sin \theta, a \theta \cos \alpha)$.
12. (a) If R is the radius of spherical curvature, show that $R=\frac{\left|t \times t^{\prime \prime}\right|}{k^{2} \tau}$.

Or
(b) Find the involutes and evolutes of the circular helix $r=(a \cos \theta, a \sin \theta, b \theta)$.

Page $4 \quad$ Code No. : 6839
[P.T.O.]
13. (a) For a right helicoid given by $(u \cos v, u \sin v, a v)$, determine $\left(r_{1}, r_{2}, N\right)$ at a point on the surface and the direction of the parametric curves. Find the direction making angle $\frac{\pi}{2}$ at a point on the surface with the parametric curve $v=$ constant.

Or
(b) Prove that position vector of a point on the anchor ring is
$r=((b+a \cos u), \cos v,(b+a \cos u) \sin v, a \sin u))$ where $(b, 0,0)$ is the center of the circle and z-axis is the axis of rotation.
14. (a) For a variable direction at P, prove that $\left|\frac{d \phi}{d S}\right|$ is maximum in a direction orthogonal to the curve $\phi(u, v)=$ constant through P and the angle between $\left(-\phi_{2}, \phi_{1}\right)$ and the orthogonal direction in which ϕ is increasing is $\frac{\pi}{2}$.

Or
(b) Prove that the curves of the family $\frac{v^{3}}{u^{2}}=$ constant are geodesics on a surface with the metric $v^{2} d u^{2}-2 u v d u d v+2 u^{2} d v^{2}, \quad u>0$, $v>0$.

Page $5 \quad$ Code No. : 6839
15. (a) Prove that a curve on a surface is a geodesic if and only if the geodesic curvature vector is zero.

Or

(b) Show that the points of the paraboloid $r=\left(u \cos v, u \sin v, u^{2}\right)$ are elliptic but the points of the helicoids $r=(u \cos v, u \sin v, a v)$ are hyperbolic.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Let γ be a curve of class $m \geq 2$ with arc length s as parameter. If the point p on γ has parameter zero prove that the equation of the oscillating plane is $\left[R-r(0), r^{\prime}(0), r^{\prime \prime}(0)\right]=0$ where $r^{\prime \prime} \neq 0$. If $r^{\prime \prime}=0$, assuming γ is analytic and prove that the equation of the plane at an inflexional point is $\left[R-r(0), r^{\prime}(0), r^{(k)}(0)\right]=0$.

Or

(b) Prove by an example that at a point of inflexion, a curve of class α need not possess on oscillating plane.

Page $6 \quad$ Code No. : 6839
17. (a) Prove that the curvature k_{1} and torsion τ_{1} of an involute \bar{C} of c are $k_{1}^{2}=\frac{\tau^{2}+k^{2}}{k^{2}(c-s)^{2}}$, $\tau_{1}=\frac{k \tau^{\prime}-k^{\prime} \tau}{k(c-s)\left(k^{2}+\tau^{2}\right)}$.

Or
(b) Find the center of spherical curvature of the curve given by $r=(a \cos u, a \sin u, a \cos 2 u)$.
18. (a) Prove that the first fundamental form of a surface is a positive definite quadratic for in $d u, d v$.

Or
(b) Obtain the surface equation of sphere and find the singularities, parametric curves, tangent plane at a point and the surface normal.
19. (a) State and prove Liouville's Formula.

Or
(b) A helicoids is generated by a screw motion of a straight line which met the axis at an angle α. Find the orthogonal trajectories of the generators. Find also the metric of the surface referred to the generators and their orthogonal trajectories as parametric curves.

Page $7 \quad$ Code No. : 6839
20. (a) If k is the normal curvature in a direction making an angle ψ with the principal direction $v=$ constant, the prove that $k=k_{a} \cos ^{2} \psi+k_{b} \sin ^{2} \psi$ where k_{a} and k_{b} are principal curvatures at the point P on the surface.

Or

(b) State and prove Rodrigue's formula.

Page $8 \quad$ Code No. : 6839

Reg. No. : \qquad

Code No. : 6840

Sub. Code : PMAM 25
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics - Core
GRAPH THEORY
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. If G is a forest, then the number of edges is
(a) $\varepsilon=\gamma-\omega$
(b) $\varepsilon=\gamma-2$
(c) $\varepsilon=\gamma$
(d) $\varepsilon=\frac{\gamma}{2}$
2. If any two vertices of G are connected by atleast two internally disjoint paths, then G is
(a) 2-connected
(b) 3-connected
(c) 4-connected
(d) 5-connected
3. A connected graph has an Euler trail if it has atmost \qquad vertices of odd degree.
(a) 3
(b) 2
(c) 1
(d) 4
4. The number of Eulerian graphs with γ even and ε odd is
(a) 1
(b) 2
(c) 0
(d) $\gamma \varepsilon$
5. Which one of the following is not 1-factorable?
(a) Petercen Graph
(b) $K_{5.5}$
(c) K_{10}
(d) None of these
6. The edge-chromatic number of the graph is
(a) 1
(b) 2
(c) 3
(d 4
7. G is a graph on 12 vertices. The covering number of G is 4 . Then the independence number of G is
(a) 16
(b) 48
(c) 8
(d) 3

Page 2 Code No. : 6840
8. $\chi\left(K_{4}, 4\right)=$
(a) 1
(b) 2
(c) 4
(d) 0
9. If G is a loopless graph with $\Delta=3$, then χ^{\prime}
(a) $=3$
(b) $=2$
(c) <4
(d) ≤ 4
10. If G is 4 -chromatic, the G contains a subdivision of
(a) K_{1}
(b) K_{2}
(c) K_{3}
(d) K_{4}

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, by choosing either (a) or (b).
11. (a) Prove that every tree has either one center or two adjacent centers.

Or
(b) Prove that a connected graph G is a tree if and only if every edge of G is a cut edge.

Page $3 \quad$ Code No. : 6840
12. (a) Prove that a connected graph has an Euler trial if and only if it has atmost two vertices of odd degree.

Or
(b) Explain the traveling salesman problem.
13. (a) Prove that every 3 -regular graph without cut edges has a perfect matching.

Or
(b) Let M and N be disjoint matchings of G with $|M|>|N|$. Prove that there are disjoint matchings M^{1} and N^{1} of G s.t. $\left|M^{1}\right|=|M|-1$, $\left|N^{1}\right|=|N|+1$ and $M^{1} \cup N^{1}=M \cup N$.
14. (a) For any two positive integers k and l, prove that $r\left(k, l \geq 2^{m / 2}\right)$ where $m=\min \{k, l\}$.

Or
(b) State and prove Turan's Theorem.
15. (a) If G is a K-Critical, prove that $\delta \geq K-1$.

Or
(b) Prove that every critical graph is a block.

Page $4 \quad$ Code No. : 6840
[P.T.O.]

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, by choosing either (a) or (b).
16. (a) Prove that $\tau\left(K_{n}\right)=n^{n-2}$.

Or
(b) Prove that the spanning tree obtained by Kruskal's algorithm is an optimal tree.
17. (a) Let G be a simple graph with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{\gamma}\right) \quad$ where $\quad d_{1} \leq d_{2} \leq \ldots \in d_{\gamma} \quad$ and $\gamma \geq 3$. Suppose that there is no value of $m<\frac{\gamma}{2}$ for which $d_{m} \leq m$ and $d_{8-m}<\gamma-m$. Prove that G is Hamiltonian.

Or

(b) If G is Eulerian, prove that any trial in G constructed by Fleury's algorithm is an Euler Tour of G.
18. (a) State and prove Hall's theorem.

Or
(b) Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in minimum covering.

Page $5 \quad$ Code No. : 6840
19. (a) In any graph G with $\delta(G)>0$, prove that $\alpha^{1}+\beta^{1}=\gamma$.

Or
(b) For any two integers $k \geq 2, l \geq 2$, prove that $r(k, l) \leq r(k, l-1)+r(l-1,2)$. If $r(k, l-1)$ and $r(k-1, l)$ are both even, prove that strict inequality holds.
20. (a) State and prove Brook's theorem.

Or
(b) If G is a tree, prove that $\pi_{k}(G)=k(k-1)^{\gamma-1}$ and hence find the chromatic polynomial of

Page $6 \quad$ Code No. : 6840
\qquad

Code No. : 5088

Sub. Code : HMAM 41
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Fourth Semester
Mathematics
FUNCTIONAL ANALYSIS
(For those who joined in July 2012-2015)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Every linear transformation of N into an arbitrary normal linear space N^{\prime} is \qquad
(a) Bounded
(b) Unbounded
(c) Continuous
(d) Discontinuous
2. If $S=\{x:\|x\| \leq 1\}$ is the closed unit sphere in N, then its image $T(S)$ is a \longrightarrow set in N^{1}.
(a) Bounded
(b) Unbounded
(c) Continuous
(d) Discontinuous
3. If x and y are any two vectors in a Hilbert space, then $|(x, y)|-\|x\| y \|$
(a) \leq
(b) <
(c) \geq
(d) $>$
4. If M and N are closed linear spaces of a Hilbert space H such that $M \perp N$, then the linear subspace $M+N$ is \qquad
(a) open
(b) closed
(c) union
(d) disjoint
5. Which one is the property of orthonormal?
(a) $i=j \Rightarrow e_{i} \perp e_{j}$
(b) $\left\|e_{i}\right\|=0$ for every i
(c) $\left\|e_{i}\right\|=1$ for every i
(d) $i=j \Rightarrow e_{i} \| e_{j}$
6. Every non-zero Hilbert space contains a complete \longrightarrow set.
(a) parallel
(b) normal
(c) orthonormal
(d) closed
7. If N is a normal operator on H, then $\left\|N^{2}\right\|=$
\qquad
(a) 1
(b) 0
(c) N
(d) $\|N\|^{2}$
8. The unitary operators on H form a
(a) subgroup
(b) cyclic subgroup
(c) group
(d) abelian group
9. If A is a division algebra, then it equals the set of all scalar multiples of the
(a) identity
(b) constant
(c) reciprocal
(d) inverse
10. If G is an open set, then S is a set.
(a) open
(b) closed
(c) normal
(d) orthonormal

Page $3 \quad$ Code No. : 5088

PART B- ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Prove that if N is a normal linear space and x_{0} is a non-zero vector in N , then there exist a functional f_{0} in N * such that $f_{0}\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\left\|f_{0}\right\|=1$.

Or
(b) If N and N^{\prime} be the normal linear spaces and T a linear transformation of N into N^{\prime}. Then prove that the following conditions on T are all equivalent : (i) T is continuous (ii) T is continuous at the origin, in the sense that $x_{n} \rightarrow 0 \Rightarrow T\left(x_{n}\right) \rightarrow 0$.
12. (a) State and prove open mapping theorem.

Or
(b) Prove that if M is a closed linear space of a Hilbert space H, then $H=M \oplus M^{\perp}$.
13. (a) Prove that an operator T on H is self adjoint $\Leftrightarrow\left(T_{x}, x\right)$ is real for all x.

Or

Page $4 \quad$ Code No. : 5088
[P.T.O.]
(b) Prove that if $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space H, and if x is any vector in H, then the set $S=\left\{e_{i}:\left(x_{i} e_{i}\right) \neq 0\right\}$ is either empty or countable.
14. (a) Prove that if P is the projection on a closed linear subspace M of H, then M is invariant under operator $T \Leftrightarrow T P=P T P$.

Or
(b) Prove that if T is normal, then the M_{i} 's are pairwise orthogonal.
15. (a) Prove that G is an open sat, and therefore S is a closed set.

Or

(b) Prove that $\sigma\left(x^{n}\right)=\sigma(x)^{n}$.

PART C - (5 $\times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
Each answer should not exceed 600 words.
16. (a) Prove that let M be a closed linear subspace of a normal linear space N. If the norm of coset $x+M$ in the quotient space N / M is defined by $\quad\|x+M\|=\inf f\{\|x+M\|: m \in M\}$. Then N / M is a normal linear space

Or

Page $5 \quad$ Code No. : 5088
(b) Show that let M be a linear subspace of a normed linear space N, and let f be a functional defined on M. If x_{0} is a vector not in M, and if $M_{0}=M+\left[x_{0}\right]$ is the linear subspace spanned by M and x_{0} such that $\left\|f_{0}\right\|=\|f\|$.
17. (a) State and prove closed graph theorem.

Or
(b) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
18. (a) State and prove Bessel's Inequality.

Or

(b) Prove that let H be a Hilbert space, and let f be an arbitrary functional in H^{*}. Then there exists a unique vector y in H such that $f(x)=(x, y)$ for every x in H.
19. (a) Prove that if P is a projection on H with range M and null space N, then $M \perp N \Leftrightarrow P$ is self adjoint; and in this case $N=M^{\perp}$.

Or
(b) Prove that if T is normal, then the M_{i} 's span H.

Page $6 \quad$ Code No. : 5088
20. (a) Prove that if r is an element of A with the property that $1-x r$ is regular for every x, then r is in R.

Or
(b) Prove that $r(x)=\lim \left\|x^{n}\right\|^{1 / n}$.

Page $7 \quad$ Code No. : 5088

Code No. : 6842

Sub. Code : PMAE 22
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester
Mathematics

ELECTIVE - DISCRETE MATHEMATICS

(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. A compound proposition that is always true no matter what the truth values of the propositions that occur in it is called \qquad .
(a) logic
(b) tautology
(c) inverse
(d) truth value
2. The conditional statement $p \rightarrow q$ is false when p is true and q is \qquad .
(a) true
(b) false
(c) both
(d) none
3. The number of different bit strings of length seven are \qquad _.
(a) 7 !
(b) 7-1!
(c) 2^{7}
(d) 2^{6}
4. By product rule the number of different subsets of a finite set S is \qquad .
(a) $|S|$
(b) $2^{|S|}$
(c) $2^{|S|-1}$
(d) $|S|-1$
5. A relation R on a set A is called \qquad if $(b, a) \in R$ whenever $(a, b) \in R$
(a) refluxive
(b) symmetric
(c) transitive
(d) antisymmetric
6. A domain of n-ary relation is called a \qquad when the value of the n-tuple from this domain determines the n-tuple.
(a) tables
(b) primary key
(c) extension
(d) inclusion
7. The value of $1+1=$ \qquad in Boolean function.
(a) 1
(b) 0
(c) 2
(d) -1
8. A is a Boolean variable or its complement.
(a) inverse
(b) literal
(c) minterm
(d) none
9. The \qquad which accepts the value of one Boolean variable as input and produces the complement of this value as its output
(a) inverter
(b) gate
(c) nor
(d) and
10. Cells are said to be \qquad if the minterms that they represent differ in exactly in one literal.
(a) normal
(b) complement
(c) adjacent
(d) none

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
11. (a) Write the truth table for the biconditional $p \leftrightarrow q$.

Or

(b) Show that $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.
12. (a) How many one to one functions are there from a set with m elements to one with n elements?

Or
(b) How many cards must be selected from a standard deck of 52 cards to guarantee that atleast three cards of the same suit are chosen?
13. (a) How many refluxive relations are there on a set with n elements?

Or
(b) Define $M_{R_{1} \cup R_{2}}$ and $M_{R_{1} \cap R_{2}}$. Suppose that the relations R_{1} and R_{2} on a set A are represented by the matrices $M_{R_{1}}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $\quad M_{R_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ then what are the matrices representing $R_{1} \cup R_{2}$ and $R_{1} \cap R_{2}$.
14. (a) Find the sum of products expansion for the function $F(x, y, z)=(x+y) \bar{z}$.

Or
(b) Write down the Boolean identities with their names.

Page $4 \quad$ Code No. : 6842
[P.T.O.]
15. (a) A committee of 3 individuals decides issues for an organization. Each individual votes either year or no for each proposal. A proposal is passed if it received atleast two yes votes. Design a circuit that determines whether a proposal passes.

Or
(b) Find K-maps for (i) $x y+\bar{x} y$ (ii) $x \bar{y}+\bar{x} y$ (iii) $x \bar{y}+\bar{x} y+\bar{x} \bar{y}$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Show that $\forall x(P(x) \wedge Q(x))$ and $\forall x P(x) \wedge \forall x Q(x)$ are logically equivalent.

Or
(b) (i) Write down the truth table for $(p \vee \neg q) \rightarrow(p \wedge q)$.
(ii) Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology.
17. (a) Each user on a computer has a password which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain atleast one digit. How many possible passwords are there?

Or
Page $5 \quad$ Code No. : 6842
(b) Prove that every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ that is either strictly increasing or strictly decreasing.
18. (a) Find the zero one matrix of the transitive closure of the relation R where $M_{R}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$.

Or
(b) Prove that the relation R on a set A is transitive iff $R^{n} \subseteq R, n=1,2, \ldots$
19. (a) Translate the distributive law $x+y z=(x+y)(x+z)$ into a logical equivalence.

Or
(b) Translate $1.0+0+1=0$ into logical equivalence.
20. (a) Use K-maps to minimize these sum of products expansions.
(i) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} \bar{z}$
(ii) $x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

Or
Page 6 Code No. : 6842
(b) Construct circuit that produce the following outputs:
(i) $(x+y) \bar{x}$
(ii) $\bar{x}(\overline{y+\bar{z}})$
(iii) $(x+y+z)(\bar{x} \bar{y} \bar{z})$.

Page $7 \quad$ Code No. : 6842
\qquad

Code No. : 6843

Sub. Code : PMAE 23
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester

Mathematics

ELECTIVE - PARTIAL DIFFERENTIAL EQUATIONS

(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. The primitive of the equation $\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0$ is
(a) $x z+y^{3}=c x$
(b) $x^{2} z+y^{3}=c$
(c) $x^{2} z+y^{3}=c x$
(d) $x^{2} z+y^{2}=c x$
2. If X is a vector such that $X \cdot \operatorname{CurlX}=0$ and μ is an arbitrary function of x, y, z, then $(\mu X) \cdot \operatorname{Curl}(\mu X)=$ \qquad .
(a) μ
(b) 0
(c) 1
(d) X
3. By eliminating the arbitrary constants from $2 z=(a x+y)^{2}+b$ we get the partial differential equation \qquad _.
(a) $p x+q y=q$
(b) $p x+q y=0$
(c) $p y+q x=q^{2}$
(d) $p x+q y=q^{2}$
4. The equation $z=f(x-y)$ gives the partial differential equation \qquad —.
(a) $p+q=0$
(b) $p-q=0$
(c) $p x+q y=0$
(d) $p y-q x=0$
5. Along every characteristic strip of the equation $F(x, y, z, p, q)=0$, the function $F(x, y, z, p, q)$ is
\qquad .
(a) zero
(b) a constant
(c) independent
(d) equal
6. If every solution of $f(x, y, z, p, q)=0$ is also a solution of $g(x, y, z, p, q)=0$, then they are said to be \qquad .
(a) equal
(b) equivalent
(c) compatible
(d) solvable
7. $\quad F\left(D, D^{\prime}\right) e^{a x+b y}=$ \qquad $e^{a x+b y}$.
(a) $\frac{1}{F(a, b)}$
(b) $F(a, b)$
(c) $F(x+a, y+b)$
(d) $F(b, a)$
8. $\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}$ is called the one-dimensional
\qquad equation.
(a) diffusion
(b) heat
(c) wave
(d) harmonic
9. The characteristic cone at a point touches
\qquad characteristic surface(s) at the point.
(a) only one
(b) at least one
(c) many
(d) all the above
10. The surface generated by the bicharacteristics of the linear equation $L(u)=0$ is called a
\qquad .
(a) Monoid
(b) Characteristic cone
(c) Conoid
(d) Conic

Page $3 \quad$ Code No. : 6843

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
11. (a) Verify that the equation $x\left(y^{2}-a^{2}\right) d x+y\left(x^{2}-z^{2}\right) d y-z\left(y^{2}-a^{2}\right) d z=0 \quad$ is integrable and solve it.

Or

(b) Find the integral curves of the equations $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}$.
12. (a) Find the general integral of $z(x p-y q)=y^{2}-x^{2}$.

Or
(b) Prove that the general solution of the linear partial differential equation $P p+Q q=R$ is $F(u, v)=0$ where F is an arbitrary function and $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$ form a solution of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$.

Page $4 \quad$ Code No. : 6843
[P.T.O.]
13. (a) Show that the equations $x p-y q=x$, $x^{2} q+q=x z$ are compatible and find their solution.

Or
(b) Find a complete integral of the equation $p^{2} x+q^{2} y=z$.
14. (a) Explain the role of second order equations in Physics.

Or
(b) Solve the equation

$$
\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y}
$$

15. (a) Classify the equation $u_{x x}+u_{y y}=u_{z}$.

Or
(b) Classify the equation $u_{x x}+u_{y y}=u_{z z}$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Show that a necessary and sufficient condition that the Pfaffian Differential equation $X \cdot d r=0$ should be integrable is that $X \cdot \operatorname{Curl} X=0$.

Or

(b) Verify that the equation
$z\left(z+y^{2}\right) d x+z\left(z+x^{2}\right) d y-x y(x+y) d z=0 \quad$ Is integrable and find its primitive.

Page $5 \quad$ Code No. : 6843
17. (a) If u is a function of x, y and z which satisfies the equation $(y-z) \frac{\partial u}{\partial x}+(z-x) \frac{\partial u}{\partial y}+(x-y) \frac{\partial u}{\partial z}=0$ show that u contains x, y and z only in combinations $x+y+z$ and $x^{2}+y^{2}+z^{2}$.

> Or
(b) Find the equation of the integral surface of the differential equation $2 y(z-3) p+(2 x-z) q=y(2 x-3)$ which passes through the circle $z=0, x^{2}+y^{2}=2 x$.
18. (a) Find the solution of the equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y) \quad$ which passes through the x-axis.
Or
(b) Explain Charpit's method.
19. (a) Find the solution of the equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=x-y$.

Or
(b) Explain the method of solving reducible equations.
20. (a) Discuss the characteristics of equations in three variables.

Or
(b) Explain the method of separation of variables and illustrate it by an example.

Page $7 \quad$ Code No. : 6843
(8 Pages)
Code No. : 6845

Reg. No. : \qquad
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Third Semester
Core - Mathematics
TOPOLOGY - I
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer :

1. Which one of the following is a topology on $X=\{a, b, c\}$
(a) $\{\phi, X,\{a\},\{b\}\}$
(b) $\{\phi, X,\{a, b\},\{b, c\}\}$
(c) $\{\phi,\{a\},\{b\},\{a, b\}\}$
(d) $\{\phi, X,\{a, c\}\}$
2. Which one of the following is not true
(a) If $A=[0,1]$, then $A^{\prime}=[0,1]$
(b) If $B=\left\{\frac{1}{n} / n \in Z_{+}\right\}$then $B^{\prime}=\{0\}$
(c) If $C=Q$ then $C^{\prime}=R$
(d) If $D=Z_{+}$then $D^{\prime}=Z_{+}$
3. $\pi_{3}(7,8,9,2,3,5)$ is
(a) 9
(b) 8
(c) 2
(d) 3
4. If $f: R \rightarrow R$ is defined by $f(x)=3 x+1$ then f^{-1} is given by
(a) $f^{-1}(y)=\frac{y+1}{3}$
(b) $\quad f^{-1}(y)=\frac{y-1}{3}$
(c) $\quad f^{-1}(y)=3 y-1$
(d) $\quad f^{-1}(y)=\frac{y}{3}-1$
5. If d is the discrete metric on X, which one of the following is not true (Here $a \in X$ and $|X| \geq 2$)
(a) $B(a, 1 / 2)=\{a\}$
(b) $\quad B(a, 1)=X$
(c) $\quad B(a, 2)=X$
(d) $B(a, 0.8)=\{a\}$
6. Which one of the following is of true
(a) $\quad R^{n}$ in the product topology is metrizable
(b) $\quad R^{w}$ in the product topology is metrizable
(c) The uniform topology on R^{J} is metrizable
(d) $\quad R^{w}$ is the box topology in metrizable
7. Which one of the following set is connected in R
(a) $(2,5) \cup(7,9)$
(b) $(2,6) \cup(5,10)$
(c) $\{0\} \cup(1,2)$
(d) $\quad Q$ (the set of all ration number)
8. Which one of the following is not true?
(a) every closed subspace of a compact space is compact
(b) every compact subspace of a Hausdorff space is closed
(c) any space containing only finitely many points is compact
(d) R is compact
9. A space X is said to be limit point compact it
(a) every finite subset of X has a limit point
(b) every infinite subset of X is bounded
(c) every infinite subset of X has a limit point
(d) every subset of X has a limit point
10. Which one of the following is not locally compact
(a) the real line \mathbb{R}
(b) the subspace Q of rational numbers
(c) the space \mathbb{R}^{n}
(d) every simply ordered set having the l.u.b. property

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Let B and B^{\prime} be bases for the topologies τ and τ^{\prime} respectively on X. Prove that τ^{\prime} is fines than τ if and only if for each $x \in X$ and each basis element $B \in B$ containing x, there is a basis element $B^{\prime} \in B^{\prime}$ such that $x \in B^{\prime} \subseteq B$.

Or
(b) Define a Hausdorff space. Prove that every finite point set in a Hausdorff space is closed.
12. (a) If B is a basis for the topology of X and e is a basis for the topology of Y, prove that the collection $D=\{B \times C / B \in B$ and $C \in \mathcal{C}\}$ is a basis for the topology of $X \times Y$.

Or
(b) State and prove the pasting lamma.
13. (a) Let X be a metric space with metric d. Define $\bar{d}: X \times X \rightarrow R \quad$ by the equation $\bar{d}(x, y)=\min \{d(x, y), 1\}$. Prove that \bar{d} is a metric that induces the same topology as d.

Or
(b) Let $f: X \rightarrow Y$. If the function f is continuous, prove that for every convergent sequence $x_{n} \rightarrow x$ in X, the sequence $f\left(x_{n}\right)$ converges to $f(x)$. Also show that the converse holds if X is metrizable.
14. (a) If the sets C and D form a separation of X, and if Y is a connected subspace of X, prove that Y lies entirely within either C on D.

Or
(b) Prove that the image of a compact space under a continuous map is compact.
15. (a) Define a limit point compact space. Give an example of a limit point compact space which is not compact with justification.

Or
(b) Let X be a locally compact Hausdorff; let A be a subspace of X. If A is closed in X or open in X, prove that A is locally compact.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Define a topology. Find two non comparable topologies on $X=\{a, b, c\}$. If $\left\{\tau_{\alpha}\right\}$ is a family of topologies on X, show that $\cap \tau_{\alpha}$ is a topology on X. Is $\cup \tau_{\alpha}$ a topology on X ? Justify.

Or
(b) (i) Let Y be a subspace of X. Prove that a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
(ii) If X is a Hawsdorff space, prove that a sequence of points of X converges to at most one point of X.
17. (a) State and prove any three rules for constructing continuous functions.

Or
(b) Define the box and product topologies and compare them.
18. (a) Define a suitable metric D on R^{w} and show that it induces the product topology on R^{w}.

Or
(b) State and prove the uniform limit theorem.
19. (a) (i) Prove that the union of a collection of connected subspaces of X that have a point in common is connected.
(ii) Show that if X is an infinite set, it is connected in the finite complement topology.

Or
(b) Prove that the product of finitely many compact spaces is compact.
20. (a) Define a sequentially compact space and show that every limit point compact space is sequentially compact if X is metrizable.

Or
7 Code No. : 6845
(b) If X is a locally compact Hausdorff space that is not itself compact, prove that X has a one-point compactification.

Code No. : 6845
\qquad

Code No. : 6846

Sub. Code : PMAM 33

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Third Semester
Core - Mathematics
ADVANCED ALGEBRA - I
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. If $\operatorname{dim} V=6$ and $W=\operatorname{Hom}(V, V)$ then $\operatorname{dim} \operatorname{Hom}(W, F)$ is
(a) 6
(b) 36×6
(c) 36^{2}
(d) 36
2. If $(u, v)=i$ and $(u, w)=2+i$ then $(u, i v+w)$ is
(a) $2+3 i$
(b) $3+i$
(c) $1+i$
(d) $2+2 i$
3. If $T \in A(V)$, then $\lambda \in F$ is called a characteristic root if
(a) $\quad \lambda=T$ is regular
(b) for some $v \neq 0$ in $V, v T=v$
(c) $\quad f(\lambda)=0$ for some polynomial $f(x) \in F$
(d) $\lambda+T$ is singular
4. If $m(S)=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $m(S T)=\left(\begin{array}{cc}3 & 6 \\ 5 & 12\end{array}\right)$ then $m(T)$ is
(a) $\quad\left(\begin{array}{cc}-1 & 0 \\ 3 & 2\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}0 & -1 \\ 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{cc}-1 & 0 \\ 2 & 3\end{array}\right)$
(d) $\quad\left(\begin{array}{cc}-1 & 0 \\ 3 & 4\end{array}\right)$
5. If $T \in A(V)$ is nilpotent, then 6 is called the index of nilpotence of T if
(a) $T^{6}=0$ but $T^{5} \neq 0$ (b) $T^{5}=0, T^{6} \neq 0$
(c) $T^{6}=0$ but $T^{7} \neq 0$
(d) $T^{6}=0$
6. Which one of the following is not a Jordan block
(a) $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
(b) $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right)$
(c) $\quad\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right)$
(d) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
7. If F is a field of characteristic 2 teritte matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ has trace
(a) 1
(b) 0
(c) 3
(d) 4
8. The secular equation of $\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right)$ is
(a) $x^{2}-x+6$
(b) $x^{2}-x$
(c) $x^{2}-x-6$
(d) $x^{2}-7$
9. Which one of the following is not true
(a) $\left(T^{\times}\right)^{*}=T$
(b) $(S+T)^{*}=T^{*}+S^{*}$
(c) $\quad(\lambda S)^{*}=\pi S$ *
(d) $(S T)^{*}=S * T$ *
10. Which one of the following is not a characteristic root of an unitary transformation
(a) 1
(b) i
(c) $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}$
(d) $1+i$

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) If V finite-dimensional and $v \neq 0 \in V$, prove that there is an element $f \in V$ such that $f(v) \neq 0$.

Or

(b) If W is a subspace of an inner product space (finite dimensional) V, define W^{\perp} and show that $\left(W^{\perp}\right)^{\perp}=W$.
12. (a) If V is finite dimensional over F, prove that $T \in A(V)$ is regular if and only if T maps V onto V.

Or
(b) Let V be vector space of all polynomials over F of degree 3 or less and let D be its differentiation operator compute the matrix of D in the basis (i) $1, x, x^{2}, x^{3}$ (ii) $1,1+x, 1+x^{2}, 1+x^{3}$.
13. (a) If $T \in A(V)$ is nilpotent, prove that $\alpha_{0}+\alpha_{1} T+\ldots+\alpha_{m} T^{m}$ where the $\alpha_{i} \in F$, is invertible if $\alpha_{0} \neq 0$.

Or
(b) Suppose that $V=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are subspaces of V_{1} invariant under T. Let T_{1} and T_{2} be the linear transformations induced by T on V_{1} and V_{2} respectively. If the minimal polynomial of T_{i} over F is $P_{i}(x), i=1,2$, prove that the minimal polynomial of T over F is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.
14. (a) For $A, B \in F_{n}$ and $\lambda \in F$, prove that $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Or
(b) Prove that $\operatorname{det}(A)=\operatorname{det}\left(A^{\prime}\right)$.
15. (a) If $(v T, v T)=(v, v)$ for all $v \in V$, prove that T is unitary.

Or

(b) Let N be a normal transformation and suppose that λ and μ are two distinct characteristic roots of N. If v, w are in V and are such that $v N=\lambda v, w N=\mu w$, prove that $(v, w)=0$.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) If V and W are of dimensions m and n, respectively, over F, prove that $\operatorname{Hom}(V, W)$ is on dimension $m n$ over F.

Or
(b) State and prove Schwary inequality.
17. (a) If V is finite dimensional over F, prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0 . And hence show that if $T \in A(V)$ is invertible then T^{-1} is a polynomial expression in T over F.

Or
(b) Let V be he vector space of polynomials of degree 3 or less over F and defined T on V by $\left(\alpha_{0}+\alpha_{1} X+\alpha_{2} x^{2}+\alpha_{3} X^{3}\right) T=$

$$
\alpha_{0}+\alpha_{1}(x+1)+\alpha_{2}(x+1)^{2}+\alpha_{3}(x+1)^{3} .
$$

Compute the matrix of D is the basis (i) $1, x, x^{2}, x^{3}$ (ii) $1,1+x, 1+x^{2}, 1+x^{3}$ (iii) if the matrix in (1) is A and that in part (2) is B, find a matrix C so that $B=C A C^{-1}$.
18. (a) If $T \in A(V)$ has all its characteristic roots in F, prove that there is a basis of V in which the matrix of T is triangular.

Or
(b) Prove that two nilpotent linear transformations are similar if and only if they have the same invariants.
19. (a) For all $A, B \in F_{n}$, show that (i) $\left(A^{\prime}\right)^{\prime}=A$ (ii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$ and (iii) $(A B)^{\prime}=B^{\prime} A^{\prime}$.

Or
(b) For $A, B \in f_{n}$, prove that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
20. (a) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.

Or
(b) If $T \in A(V)$, prove that (i) $T^{*} \in A(V)$ (ii) $\left(T^{*}\right)^{*}=T$ and $(S+T)^{*}=S^{*}+T^{*}$.

Reg. No. :

\qquad

Code No. : 6847

Sub. Code : PMAM 34

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Third Semester
Core - Mathematics
OPERATIONS RESEARCH
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. A feasible solution is called a basic feasible solution if the number of non-negative allocation is equal to
(a) $m-n+1$
(b) $m-n-1$
(c) $m+n-1$
(d) $m+n$
2. For maximization in TP, the objective is to maximize the total
(a) solution
(b) profit
(c) profit matrix
(d) demand
3. Which of the following is the correct answer?
(a) CPM is an improvement upon bar chart method
(b) CPM provides a realistic approach to daily problem
(c) CPM avoids delays which one very common in bar charts
(d) All the above
4. The performance of a specific task in CPM is known a
(a) Dummy
(b) Event
(c) Activity
(d) Contract
5. Which of the following is not correct?
(a) An IPP that has no constraints is known as a knapsack problem
(b) An IPP that has only one constraint is known as a knapsack problem
(c) Capital budgeting problems may be handled as a " $0-1$ " type IPP
(d) A traveling salesman problem may be solved using branch and bound method

Code No. : 6847
6. Branch and bound method divides the feasible solution space into parts by
(a) enumerating
(b) branching
(c) bounding
(d) all the above
7. What aims at optimizing inventory levels?
(a) Inventory control
(b) Inventory capacity
(c) Inventory planning
(d) None of the above
8. The minimum stock level is calculated as
(a) Reorder level - (normal consumption \times normal delivery time)
(b) Reorder level + (normal consumption \times normal delivery time)
(c) (Reorder level + normal consumption) \times normal delivery time
(d) (Reorder level + normal consumption) / normal delivery time
9. Service mechanism in a queuing system is characterized by
(a) server's behaviour
(b) customers in the system
(c) customer's behaviour
(d) all of the above
10. The calling population is assumed to be infinite when
(a) arrivals are independent of each other
(b) capacity of the system is infinite
(c) service rate is faster than arrival rate
(d) all the above

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a)

| | Denver | Miami |
| :--- | :---: | :---: | Supply

Suppose that for the case when the demand exceeds the supply, a penalty is levied at the rate of $\$ 200$ and $\$ 300$ for each undelivered car at Denver and Miami, respectively. Additionally, no deliveries are made from the Los angles plant to the Miami distribution center set up the model, and determine the optimal shipping schedule.

Or
4
Code No. : 6847
(b) Compare starting solutions obtained by the north-west corner and VAM for the model.

0	2	1	6
2	1	5	7
2	4	3	7
5	5	10	

12. (a) Determine the minimal spanning tree of the network given below under the conditions.
(i) Nodes 5 and 6 are linked by a 2 -mile cable.
(ii) Nodes 2 and 5 cannot be linked.

Or
(b) Construct the project network comprised of activities A to P that satisfies the following precedence relationship.
(i) A, B and C , the first activities of the project, can be executed concurrently.
(ii) D, E and F follow A .
(iii) I and G follow both B and D .
(iv) H follows both C and G .
(v) K and L follow I .
(vi) J succeeds both E and H.
(vii) M and N succeed F , but cannot start until both E and H are completed.
(viii) O succeeds M and I .
(ix) P succeeds J, L and O .
(x) K, N and P are terminal activities of the project.
13. (a) Find optimum integer solution to the LPP.

Maximize $z=x_{1}+2 x_{2}$
Subject to the constraints
$2 x_{2} \leq 7, x_{1}+x_{2} \leq 7,2 x_{1} \leq 11, x_{1}, x_{2} \geq 0$ and are integers.

Or
(b) Explain Branch and Bound algorithm.
14. (a) Calculate the optimum level of inventory if the demand is instantaneous.

Weakly sales:	0	1	2	3

Probability: $\begin{array}{llll}0.01 & 0.06 & 0.25 & 0.35\end{array}$
Weakly sales: $\begin{array}{llll}4 & 5 & 6\end{array}$
Probability: $\begin{array}{llll}0.20 & 0.03 & 0.10\end{array}$
The cost of carrying inventory is Rs. 30/unit/week and the cost of unit shortage is Rs. 70 per week.

Or
(b) A contractor has to supply 10000 bearing 1 day to an automobile manufactures. He finds that when he starts a production run, he can produce 25000 bearings per day. The cost of holding a bearing in stock for one year is Rs. 2 and the set up cost of a production run is Rs. 1800. How frequently should production run be made?
15. (a) In a railway yard, goods trains arrive at rate of 30 trains per day. Assuming that the inter arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36 mins. Calculate (i) the mean queue size and (ii) the probability that the queue size exceeds 10 .

Or
(b) Derive litter's formulae.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Explain Hungarian assignment method.

Or
(b)

	Men			
Task	E	F	G	H
A	18	26	17	11
B	13	28	14	26
C	38	19	18	15
D	19	26	24	10

How should the tasks be allocated, one to man so as to minimize the total man hours?
17. (a) Determine the shortest route from station 1 to station 8.

(b) Distinguish CPM from PERT.
18. (a) Find the optimum integer solution to the I.P.P.

Maximize $z=x_{1}+4 x_{2}$ subject to the constraints $2 x_{1}+4 x_{2} \leq 7, \quad 5 x_{1}+3 x_{2} \leq 15$, $x_{1}, x_{2} \geq 0$ and are integers.

Or
(b) Use branch and bound method, solve

Maximize $z=7 x_{1}+9 x_{2}$ subject to
$-x_{1}+3 x_{2} \leq 6 ; 7 x_{1}+x_{2} \leq 35 ; x_{2} \leq 7, x_{1}, x_{2} \geq 0$ and are integers.
19. (a) Determine the optimal order quantities.

item i	K_{i}	D_{i} (units/day)	h_{i}	$\mathrm{a}_{\mathrm{i}}\left(\mathrm{ft}^{2}\right)$
1	20	22	0.35	1.0
2	25	34	0.15	0.8
3	30	14	0.28	1.1
4	28	21	0.30	0.5
5	35	26	0.42	1.2

Total available storage area $=25 \mathrm{ft}^{2}$. Or
(b) Lube can specializes in fast automobile oil change. The garage buys an oil in bulk at 3 per gallon. A discount price of 2.50 per gallon is available if Lube car purchases more than 1000 gallons. The garage services approximately 150 cars per day, and each oil change balls 1.25 gallons. Lube car stores bulk oil at the cost of 0.02 per gallon per day. Also, the cost of placing an order for bulk oil is 20 . There is a 2 -day lead time for delivery. Determine the optimal inventory policy.
20. (a) Explain pure death model.

Or
(b) Explain the model (M/M/C) : (GD/ $\infty / \infty)$.
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021

THIRD SEMESTER
MATHEMATICS - CORE
RESEARCH METHODOLOGY
(for those who joined in July 2017 onwards)
Maximum: 75 marks
Part - A ($10 \times 1=10$ marks $)$
Answer all question, choose the correct answer:

1. \qquad research aims at finding a solution for an immediate problem facing a society (or) business organization.
(a) Applied
(b) Analytical
(c) Quantitative
(d) Conceptual
2. \qquad methodology is a way to systematically solve the research problem.
(a) Research
(b) Proposal
(c) Thesis
(d) Planning
3. The \qquad page of a research report should not be numbered.
(a) Abstract
(b) Introduction
(c) conclusion
(d) title
4. \qquad includes questionnaires, documents, tables and so on.
(a) Bibliography
(b) contents
(c) Appendices
(d) abstract
5. The value of μ in Gamma Distribution is \qquad
(a) 0
(b) $\alpha \beta^{2}$
(c) β
(d) $\alpha \beta$
6. The variance of Chi - Square distribution is \qquad
(a) 0
(b) r
(c) $2 r$
(d) 1
7. If X has a Binomial distribution $b(n, p)$ where p is \qquad
(a) Known
(b) zero
(c) one
(d) unknown
8. If T is an unbiased estimator of θ if $E(T)=$ \qquad
(a) 0
(b) θ
(c) 1
(d) -1
9. A variable whose value is determined by the outcome of a random experiment is called a \qquad
(a) Variable
(b) random variable
(c) event
(d) experiment

10 . If A and B are independent events, then $P(A$ and $B)=$ \qquad
(a) 0
(b) $P(A)$
(c) $P(B)$
(d) $P(A) \cdot P(B)$
Part - B $(5,5=25$ MARKS $)$

Answer ALL Questions, Choosing either (a) or (b).

11(a). What is meant by the context of the project?
(OR)
(b). Outline the objectives while writing a proposal.

12(a). List the sections in the order while writing a Thesis.
(OR)
(b). What are the things present in a list of contents?
$13(\mathrm{a})$. Let X be $N(2,25)$. Find $P(-8<X<1)$.
(OR)
(b). Let X_{1}, \ldots, X_{n} be independent random variables. Suppose, for $i=1,2, \ldots, n$, that X_{i} has a $\Gamma\left(\alpha_{i}, \beta\right)$ distribution. Let $Y=\sum_{i=1}^{n} X_{i}$. Then prove that Y has a $\Gamma\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right)$ distribution.
14(a). Let $Y_{1}<Y_{2}<Y_{3}<Y_{4}$ denote the order Statistic of a random sample of size 4 from a distribution having pdf

$$
f(x)= \begin{cases}2 x & 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Then find $P\left(\frac{1}{2}<Y_{3}\right)$.
(OR)
(b). If $\bar{X}=53, \mu=56, n=16, S=3$, then find the value of \boldsymbol{e}. Statintic t 15(a). A dealer in refrigerators estimates from his past experience the probabilities of his selling refrigerators in a day. These are as follows:

No. of refrigerators sold in a day	0	1	2	3	4	5	6
Probability	0.03	0.20	0.23	0.25	0.12	0.10	0.07

Find the man number of refrigerators sold in a day.

> mean
(OR)
(b). The probability that a man fishing at a particular place will catch $1,2,3,4$ fish are $0.5,0.4,0.3$ and 0.2 respectively. What is the expected number of fish caught?

$$
\text { Part. - C }(5 \star 8=40 \text { MARKS })
$$

Answer ALL Questions, Choosing either (a) or (b).

16(a). How Eradicate the ethical problems in Research project?
(OR)
(b). What are the basic requirements of a Research project ?

17(a). Explain the component called Introduction of a Research project.
(OR)
(b). Describe the Results of a Research project.

18(a). Derive the m.g.f. of the Normal distribution.
(OR)
(b). Let X have a Gamma distribution with $\alpha=\frac{r}{2}$ where r is a positive integer, and $\beta>0$. Define $Y=\frac{2 X}{\beta}$ and find the pdf of Y.
19(a). The life time of electric bulbs for a random sample of 10 from a large consignment gave the following data:

Item	1	2	3	4	5	6	7	8	9	10	
Life Hrs.	in	4.2	4.6	3.9	4.1	5.2	3.8	3.9	4.3	4.4	5.6

Can we accept the hypothesis that the average life time of bulbs is 4,000 hours.
(OR)
(b). Is a Correlation Coefficient of 0.5 significant if obtained from a random sample of 11 pairs of values from a normal distribution? Use $t-$ test.

20(a). A firm plans to bid Rs. 300 per tonne for a contract to supply 1,000 tonnes of a metal. It has two competitors A and B and it assumes that the probability that A will bid less than Rs. 300 per tonne is 0.3 and that B will bid less than Rs 300 per torne is 0.7 . If the lowest bidder gets all the business and the firms bid independently, what is the expected value of the contract to the firm?
(OR)
(b). State and prove Central Limit theorem.

(8 Pages)
Code No. : 6850

Reg. No. :

Sub. Code : PMAE 32

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Third Semester
Mathematics
Elective-CALCULUS OF VARIATIONS AND
INTEGRAL EQUATIONS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer :

1. If F is a function of x, y^{\prime}, the Euler's equation is
(a) $F-y^{\prime} F_{y^{\prime}}=C$
(b) $\quad F_{y^{\prime}}=C$
(c) $x F_{y^{\prime}}-F_{x}=0$
(d) $x F_{y^{\prime}}=C$
2. Volume of ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is $f=$
(a) $x^{2} y z$
(b) $8 x y z^{2}$
(c) $8 x y z$
(d) $x y z^{2}$
3. $\quad \delta\left(F_{1} F_{2}\right)=$
(a) $F_{1} \delta F_{2}$
(b) $\left(\delta F_{1}\right) F_{2}$
(c) $F_{1} \delta F_{2}+F_{2} \delta F_{1}$
(d) $F_{1} \delta F_{2}-F_{2} \delta F_{1}$
4. A stationary function for an integral functional is one for which the variation of the integral is
(a) positive
(b) negative
(c) zero
(d) constant
5. $\quad y(x)=1+\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi$ is a integral equation.
(a) I kind volterra
(b) II kind volterra
(c) III kind volterra
(d) Fredholm
6. If $G(x, \xi)$ is the Green's function, then $G_{2}{ }^{\prime}(\xi)-G_{1}^{\prime}(\xi)=$
(a) 0
(b) 1
(c) $\frac{1}{p(\xi)}$
(d) $-\frac{1}{p(\xi)}$
7. If $K(x, \xi)$ is a polynomial in x and ξ then it is a — Kernal.
(a) Continuous
(b) Separable
(c) Symmetric
(d) None separable
8. The solution of $y(x)=F(x)+\lambda \int_{a}^{b} K(x, \xi / y(\xi) d \xi$ can be found by iterative method if $|\lambda|$
(a) $=\frac{1}{M(b-a)}$
(b) $<\frac{1}{M(b-a)}$
(c) $>\frac{1}{M(b-a)}$
(d) $=0$
9. The characteristic functions $y_{m}(x)$ and $y_{n}(x)$ of the homogeneous Fredholm equation $y(x)=\lambda \int_{a}^{b} K(x, \xi) y(\xi) d \xi$ are
(a) real
(b) differ by a constant
(c) orthogonal
(d) equal
10. The characteristic numbers of a Fredholm equation with a non-symmetric Kernal are
(a) real
(b) complex
(c) equal
(d) proprotional

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 250 words.
11. (a) Prove that the shortest distance between two points in a plane is a straight line.

Or
(b) Determine the stationary function of

$$
\begin{aligned}
& I=\int_{0}^{1} y^{\prime^{2}} f(x) d x, \quad y(0)=0, \quad y(1)=1 \quad \text { where } \\
& f(x)= \begin{cases}-1, & 0 \leq x<\frac{1}{4} \\
1, & \frac{1}{4}<x \leq 1\end{cases}
\end{aligned}
$$

12. (a) (i) Find $\Delta F \quad$ for

$$
F=F\left(x, y, u, v, u_{x}, u_{y}, v_{x}, v_{y}\right) .
$$

(ii) If $I=\int_{0}^{1}\left(x^{2}-y^{2}+y^{\prime 2}\right) d x$, find ΔI and δI when $d y=\in x^{2}$.

Or
4 Code No. : 6850
[P.T.O.]
(b) Solve $\quad I=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x, \quad y\left(x_{1}\right)=y_{1}$, $y\left(x_{2}\right)=g\left(x_{2}\right)$ where $g(x)=m x+b, m, b$ are constants
13. (a) State the properties of Green's function.

Or
(b) Transform $y^{\prime \prime}+x y=1, y(0)=0, y(l)=1$ into an integral equation.
14. (a) Obtain a n approximate solution of the integral equation

$$
y(x)=\int_{0}^{1} \sin (x \xi) y(\xi) d \xi+x^{2}
$$

Or
(b) Obtain the volterra equation of the second kind.
15. (a) Solve $y(x)=1+\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi \quad$ by iterative methods.

Or
(b) Show that if $F(x)=\int_{a}^{b} K(x, \xi) y(\xi) d \xi$ possesses a continuous solution, then it is of the form $y(x)=\sum_{n} \lambda_{n} f_{n} \phi_{n}(x)+\phi(x)$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
Each answer should not exceed 600 words.
16. (a) Of all rectangular parallelepipeds which have sides parallel to coordinates planes and which are inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, determine the dimensions of that one which has the largest possible volumes.

Or
(b) Find the minimal surface of revolution passing through two points.
17. (a) Obtain the partial differential equation satisfied by the equation of a minimal surface.

Or

(b) Illustrate the Dirichlet problem.
18. (a) Show that $y(x)=\int_{a}^{b} G(x, \xi) \phi(\xi) d \xi$ is an integral formulation of the differential equation $L y+\phi(x)=0$ with homogeneous boundary conditions $\alpha y+\beta y^{\prime}=0$, where $L=p \frac{d^{2}}{d x^{2}}+\frac{d p}{d x} \frac{d}{d x}+q$.
(b) Transform the problem
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(\lambda x^{2}-1\right) y=0, y(0)=0, \quad y(1)=0$ into an integral equation.
19. (a) Suppose that a string is rotating uniformly about the x-axis with angular velocity w. Show that the influence function is the Green's function of the problem.

Or
(b) Explain the procedure to solve Fredhom equations of second kind with separable Kernals.
20. (a) Determine the characteristic values and the corresponding characteristic functions of the integral equation $y(x)=\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi+F(x)$.

Or
(b) Explain an iterative method for solving a volterra equation.
\qquad

Code No. : 6853

Sub. Code : PMAM 42
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics - Core
COMPLEX ANALYSIS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. If $u+i v=z^{3}$, then $\frac{\partial u}{\partial x}$ is
(a) $3 x^{2}-3 y^{2}$
(b) $3 x^{2}+3 y^{2}$
(c) $6 x y$
(d) $-6 x y$
2. A function u which satisfies $\Delta u=0$ is said to be
(a) Analytic
(b) Harmonic
(c) Continuous
(d) Homomorphic
3. A mapping by the conjugate of an analytic function with a nonvanishing derivative is said to be
(a) Conformal
(b) Holomorphic
(c) Indirectly conformal
(d) Conjugate
4. If $w=S(z)=\frac{a z+b}{c z+d}$, then $z=S^{-1}(w)$ is
(a) $\frac{d w-b}{-c w+a}$
(b) $\frac{a w+b}{c w+d}$
(c) $\frac{d w+b}{-c w+a}$
(d) $\frac{-d w-b}{-c w+a}$
5. If $e^{h(\beta)}=1$, then $h(\beta)$ must be
(a) 0
(b) a multiple of $2 \pi i$
(c) a multiple of 2π
(d) a multiple of πi
6. If C is the unit circle $|z|=1$, then $\int_{C} \frac{e^{z}}{z} d z$ is
(a) 0
(b) 1
(c) $2 \pi i$
(d) $2 \pi e i$

Page $2 \quad$ Code No. : 6853
7. "A function which is analytic and bounded in the whole plane must reduce to a constant" - This result is known as
(a) Liouville's Theorem
(b) Morera's Theorem
(c) Cauchy's Theorem
(d) The fundamental theorem of algebra
8. If $f(z)$ is defined and continuous on a closed bounded set E and analytic on the interior of E, then the maximum of $|f(z)|$ on E is assumed
(a) on the interior of E
(b) on the boundary of E
(c) on the set E
(d) on the closure of E
9. The residue of $\frac{e^{z}}{(z-a)^{2}}$ at $z=a$ is
(a) e^{0}
(b) e
(c) e^{a}
(d) $e^{a^{2}}$

Page $3 \quad$ Code No. : 6853
10. An integral of the form $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} d x$ converges if and only if
(a) $\operatorname{deg} Q(x)$ is at least two units higher than deg $P(x)$ andif no pole lies on the real axis
(b) $\operatorname{deg} P(x)$ is at least two units higher than deg $Q(x)$ and if no pole lies on the real axis
(c) $\operatorname{deg} Q(x)$ is at least one unit higher than deg $P(x)$ and if no pole lies on the real axis
(d) $\operatorname{deg} P(x)=\operatorname{deg} Q(x)$

$$
\text { PART B }-(5 \times 5=25 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
11. (a) Prove rigorously that the functions $f(z)$ and $\overline{f(\bar{z})}$ are simultaneously analytic.

Or
(b) State and prove Lucas's theorem.
12. (a) Given three distinct points z_{2}, z_{3}, z_{4} in the extended plane, prove that there exists a unique linear transformation which carries them into $1,0, \infty$ in this order.

Or
(b) Find the linear transformation which carries $0, i,-i$ into $1,-1,0$.

Page 4 Code No. : 6853
[P.T.O.]
13. (a) State and prove Cauchy's integral formula.

Or
(b) If the piecewise differentiable closed curve γ does not pass through the point a, prove that the value of the integral $\int_{\gamma} \frac{d z}{z-a}$ is a multiple of $2 \pi i$.
14. (a) Compute $\int_{|z|=1} e^{z} z^{-n} d z$.

Or
(b) State and prove the fundamental theorem of algebra.
15. (a) State and prove the residue theorem.

> Or
(b) Find the residue of $\frac{z+1}{z^{2}-2 z}$ at its poles.

Page $5 \quad$ Code No. : 6853

PART C - $(5 \times 8=40 \mathrm{marks})$
Answer ALL questions, choosing either (a) or (b).
16. (a) Prove that $u=x^{2}-y^{2}$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function.

Or
(b) State and prove Abel's limit theorem.
17. (a) Obtain a necessary and sufficient condition under which a line integral depends only on the end points.

Or
(b) If $T_{1} z=\frac{z+2}{z+3}, T_{2} z=\frac{z}{z+1}$, find $T_{1} T_{2} z, T_{2} T_{1} z$ and $T_{1}^{-1} T_{2} z$.
18. (a) State and prove Cauchy's theorem for a rectangle.

Or

(b) Compute $\int_{|z|=\rho} \frac{|d z|}{|z-a|^{2}}$ under the condition $|\alpha| \neq \rho$.

Page $6 \quad$ Code No. : 6853
19. (a) Prove that analytic function $f(z)$ has derivatives of all orders which are analytic and can be represented by the formula $f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\xi) d \xi}{(\xi-z)^{n+1}}$.

Or
(b) State and prove Taylor's theorem.
20. (a) State and prove the argument principle.

Or
(b) Evaluate $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x$.

Reg. No. : \qquad

Code No. : 6854

Sub. Code : PMAM 43
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics - Core
ADVANCED ALGEBRA - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. What is the degree of $\sqrt{2}+\sqrt[3]{5}$ over Q ?
(a) 2
(b) 4
(c) 6
(d) 8
2. The number e is
(a) rational
(b) a unit
(c) algebraic
(d) transcendental
3. If E is the splitting field of $f(x)=x^{3}-2$ over the field of rational numbers then $[E: F]$ is
(a) 3
(b) 6
(c) 2
(d) 4
4. If $f(x) \in F(x)$ is irreducible and if characteristics of F is zero then $f(x)$ has
(a) a unique root
(b) more than one root
(c) a multiple root
(d) no multiple root
5. With usual notations, $\left[F\left(x_{1}, x_{2}, \ldots, x_{n}\right): S\right]=$
(a) $F\left(a_{1}, a_{2}, \ldots ., a_{n}\right)$
(b) S_{n}
(c) n
(d) n !
6. If F is the field of real numbers and K is the field of complex numbers then $\circ(G(K, F))$ is
(a) 0
(b) 1
(c) 2
(d) 3
7. The cyclotomic polynomial $\phi_{3}(x)=$
(a) $x-1$
(b) $x+1$
(c) $x^{2}+x+1$
(d) $x^{3}+1$

Page $2 \quad$ Code No. : 6854
8. If the field F has p^{m} elements then the splitting field of $x^{p^{m}}-x$ has \qquad elements.
(a) m
(b) p^{m}
(c) z
(d) $p^{m}-p$
9. Every polynomial of degree n over the field of complex numbers
(a) is irreducible
(b) has only one real root
(c) has all its roots in the field of complex numbers
(d) has no multiple root
10. The irreducible polynomials over the field of real numbers are of degree less than
(a) 3
(b) 4
(c) 2
(d) 7

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If $a, b \in K$ are algebraic over F of degrees m and n respectively, and if m and n are relatively prime, prove that $F(a, b)$ is of degree $m n$ over F.

Or
Page $3 \quad$ Code No. : 6854
(b) If
$T=\left\{\beta_{0}+\beta_{1} a+\ldots .+\beta_{n-1} a^{n-1} / \beta_{o}, \beta_{1}, \ldots, \beta_{n-1} \in F\right\}$ where $a \in K$ is algebraic of degree n, show that $T=F(a)$.
12. (a) If $a \in K$ is a root of $p(x) \in F[x]$, where $F \subset K$, prove that, in $K[x],(x-a) / p(x)$.

Or
(b) If F is a field of characteristic p, show that $x^{p^{m}}-x \in F[x]$, for $n \geq 1$, has district roots.
13. (a) If K is a finite extension of F, show that $G(K, F) \quad$ is a finite group and $O(G(K, F) \leq[K: F])$.

Or
(b) Prove that $G(K, F)$ is a subgroup of the group of all automorphisms of K.
14. (a) Given F is a finite field with q elements and $F \subset K$ where K is also a finite field. Show that K has q^{n} elements where $n=[K: F]$.

Or
(b) Show that for every prime number p and every positive integer m there exists a field having p^{m} elements.

Page $4 \quad$ Code No. : 6854
[P.T.O.]
15. (a) Let C be the field of complex numbers and suppose that the division ring D is algebraic over C. Prove that $\mathrm{D}=\mathrm{C}$.

Or

(b) State and prove Lagrange Identity.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) If $a \in K$ is algebraic of degree n over F, show that $[F(a): F]=n$.

Or

(b) If L is a finite extension of K and if K is a finite extension of F, prove that $[L: F]=[L: K][K: F]$.
17. (a) Prove that a finite extension of a field of characteristics D is a simple extension.

Or
(b) If $p(x)$ is a polynomial in $F[x]$ of degree $x \geq 1$ and is irreducible over F, show that there is an extension E of F , such that $[E: F]=n$, in which $p(x)$ has a root.

Page $5 \quad$ Code No. : 6854
18. (a) Given $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the field of rational functions in $x_{1}, x_{2}, \ldots ., x_{n}$ over F. Show that the field S of symmetric rational functions $a_{1}, a_{2}, \ldots, a_{n} \quad$ is $\quad F\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad$ and $G\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right), S_{n}\right)=S$, the symmetric group of degree n.

Or
(b) State and prove the Fundamental Theorem of Galois.
19. (a) Let K be a field and let G be a finite subgroup of the multiplicative group of non zero elements of K. Show that G is a cyclic group.

Or
(b) State and prove Wedderburn theorem on finite division rings.
20. (a) State and prove Left-Division Algorithm in the Hurwitz ring of integral quaternions.

Or
(b) Prove that every positive integer can be expressed as the sum of squares of four integers.

Page $6 \quad$ Code No. : 6854

Reg. No. : \qquad

Code No. : 6855

Sub. Code : PMAM 44

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Fourth Semester
Mathematics - Core
TOPOLOGY - II
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. A space for which every open covering contains a countable sub covering is called
(a) Separable
(b) Lindelöf
(c) Second countable
(d) Compact
2. Find the wrong statement
(a) T_{2} and compact \Rightarrow normal
(b) T_{3} and Lindelöf $\Rightarrow T_{3 \frac{1}{2}}$
(c) T_{2} and compact $\Rightarrow \mathrm{T}_{3}$ and Lindelöf
(d) T_{2} and compact $\Leftarrow \mathrm{T}_{3}$ and Lindelöf
3. Every regular space with a countable basis is
(a) normal
(b) completely regular but not normal
(c) regular but not completely regular
(d) compact and Hausdroff
4. A space X is completely regular then it is homeomorphic to a subspace of
(a) $[0,1]^{J}$
(b) \mathbb{R}^{n} where n is a finite
(c) \mathbb{R}^{J}
(d) $[0,1]^{J}$ where n is a finite number and J is uncountable
5. Normal space is also known as
(a) T_{4}
(b) $T_{2 \frac{1}{2}}$
(c) $T_{3 \frac{1}{2}}$
(d) T_{3}

Page $2 \quad$ Code No. : 6855
6. Tietze extension theorem implies
(a) The Urysohn Metrization theorem
(b) Heine-Borel Theorem
(c) The Urysohn Lemma
(d) The Tychonof Theorem
7. Which refines $\mathcal{A}=\{(n-1, n+1): n \in Z\}$?
(a) $\left\{\left(n-\frac{1}{2}, n+\frac{3}{2}\right): n \in Z\right\}$
(b) $\left\{\left(n+\frac{1}{2}, n+\frac{3}{2}\right): n \in Z\right\}$
(c) $\left\{\left(n-\frac{1}{2}, n+2\right): n \in Z\right\}$
(d) $\{(x, x+1): x \in Z\}$
8. Find the set which is locally finite in R ?
(a) $\{(n-1, n+1): n \in Z\}$
(b) $\left\{\left(0, \frac{1}{n}\right): n \in Z\right\}$
(c) $\left\{\left(\frac{1}{n+1}, \frac{1}{n}\right): n \in Z\right\}$
(d) $\{(x, x+1): x \in R\}$

Page $3 \quad$ Code No. : 6855
9. Which one of the following is not true?
(a) Any set X with discrete topology is a Baire space
(b) Every locally compact space is a Baire space
(c) $[0,1]$ is a Baire space
(d) Rationals as a subspace of real numbers is not a Baire space
10. Which of the following is not true?
(a) Every non empty subset of the set of irrational numbers is of second category
(b) Open subspace of a Baire space is a Baire space
(c) The set of rationals is a Baire space
(d) If $X=\bigcup_{n=1}^{\infty} B_{n}$ and X is a Baire space with $B_{1} \neq \phi$, then atleast one of \bar{B}_{n} has nonempty interior

Page $4 \quad$ Code No. : 6855
[P.T.O.]

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Define \mathbb{R}_{K} topological space. Prove that the space \mathbb{R}_{K} is Hausdorff but not regular.

Or
(b) Show that if X is regular, every pair of points of X have neighborhoods whose closures are disjoint.
12. (a) Examine the proof of Urysohn lemma and show that for a given r, $f^{-1}(r)=\left(\bigcap_{p>r} U_{p}-\bigcap_{q<r} U_{q}\right)$, where p and q are rational.

Or

(b) Show that a compact Hausdorff space is normal.
13. (a) Is it true that Tietze extension theorem implies the Urysohn lemma?

Or
(b) State and prove Imbedding theorem.

Page $5 \quad$ Code No. : 6855
14. (a) Let A be a locally finite collection of subsets of X. Then prove that (i) The collection $B=\{\bar{A}: A \in \mathscr{A}\}$ is locally finite, (ii) $\bigcup_{A \in \mathcal{A}} A=\bigcup_{A \in \mathcal{A}} \bar{A}$.

Or
(b) Define finite intersection property. Let X be a set and D be the set of all subsets of X that is maximal with respect to finite intersection property. Show that (i) $x \in \bar{A} \forall A \in D$ if and only if every neighborhood of x belongs to D, (ii) Let $A \in D$. Then prove that $B \supset A \Rightarrow B \in D$.
15. (a) Define a first category space. Prove that X is a Baire space if and only if 'given any countable collection $\left\{U_{n}\right\}$ of open sets in X, U_{n} is dense in $X \forall n$, then $\cap U_{n}$ is also dense'.

Or
(b) Define a Baire Space. Whether Q the set of rationals as a space is a Baire space? What about if we consider Q as a subspace of real numbers space. Justify your answer.

Page $6 \quad$ Code No. : 6855

PART C - (5 $\times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) What are the countability axioms? Prove that the space \mathbb{R}_{L} satisfies all the countability axioms but the second.

Or

(b) Prove that product of Lindelof spaces need not be Lindelof.
17. (a) Define a regular space and a normal space. Prove that every regular second countable space is normal.

Or

(b) (i) Prove that every normal space is completely regular and completely regular space is regular.
(ii) Prove that product of completely regular spaces is completely regular.
18. (a) State and prove Tietze extension theorem.

Or

(b) State and prove Uryzohn's metrization theorem.

Page $7 \quad$ Code No. : 6855
19. (a) State and prove Tychonoff theorem.

Or
(b) Let X be a metrizable space. If A is an open covering of X, then prove that there is an open covering ξ of X refining A that is countably locally finite.
20. (a) Let X be a space; let (Y, d) be a metric space. Let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions such that $f_{n}(x) \rightarrow f(x)$ for all $x \in X$, where $f: X \rightarrow Y$. If X is a Baire space, prove that the set of points at which f is continuous is dense in X.

Or
(b) State and prove Baire Category Theorem.

Page $8 \quad$ Code No. : 6855
(6 Pages)

Code No. : 6321

Reg. No. : \qquad

Sub. Code : PMAE 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester
Mathematics
Elective - ALGEBRAIC NUMBER THEORY
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answers :

1. Diophantus is a
mathematician.
(a) Greek
(b) Latin
(c) English
(d) German
2. If $a=b=$ and $c \neq 0$ then $a x+b y=c$ has not solution.
(a) 1
(b) 0
(c) -1
(d) 2
3. If U is unimodular then $\operatorname{det}(U)=$
(a) 1
(b) -1
(c) ± 1
(d) 0
4. IF U^{-1} exists where U is unimodular which has
(a) Integral
(b) Zero element
(c) Elements
(d) Unity
5. \quad is a zero of the form $x^{2}+y^{2}=z^{2}$.
(a) $\left(\frac{3}{5}, \frac{4}{5}, 1\right)$
(b) $\left(\frac{3}{4}, 1,1\right)$
(c) $(0,1,1)$
(d) $(0,0,0)$
6. The value of any infinite simple continued fraction $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is
(a) zero
(b) rational
(c) irrational
(d) unity
7. Any divisor of the integer 1 is called a of F.
(a) zero
(b) rational
(c) irrational
(d) unity
8. The integers of any algebraic number field from a
(a) ring
(b) field
(c) subfield
(d) unit
9. In a quadratic field, $Q(\xi)$ where ξ is a root of an irreducible - polynomial over Q.
(a) Quadratic
(b) Cubic
(c) Linear
(d) Zero
10. The _ of an algebraic number field form a multiplicative group.
(a) zeros
(b) units
(c) roots
(d) elements
PART B - ($5 \times 5=25$ marks $)$

Answer ALL questions, choosing either (a) or (b)
11. (a) When does $a x+b y=c$ have infinitely many solutions?

Or

(b) Find all integers x and y such that $147 x+258 y=369$.
12. (a) If u and v are relatively prime positive integers whose product $u v$ is a perfect square, then prove that u and v are both perfect square.

Page $3 \quad$ Code No. : 6321

Or
(b) Prove that the Diophantine equation $x^{4}+x^{3}+x^{2}+x+1=y^{2}$ has the integral solutions $(-1,1),(0,1),(3,11)$ and not others.
13. (a) For any positive real number x, prove that $\left(a_{0}, a_{1}, \ldots, a_{n-1}, x\right)=\frac{x h_{n-1}+h_{n-2}}{x h_{n-1}+k_{n-2}}$.

Or
(b) Expand $\sqrt{5}$ as an infinite simple continued fraction.
14. (a) For any $n \geq 0$, prove that $\left|\xi-\frac{h_{n}}{k_{n}}\right|<\frac{1}{k_{n} k_{n+1}}$.

Or

(b) Let ξ denote any irrational number. If there is a rational number $\frac{a}{b}$ with $b \geq 1\left|\xi-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ then prove that $\frac{a}{b}$ equals one of the convergents of the simple continued fraction expansion of ξ.
15. (a) Prove that if m and n are two different square - free rational integers withPrep,of ${ }^{\prime} 1$ then prove that $\sqrt{m}=a+b \sqrt{n}$.

Or

(b) Prove that there are infinitely many units in any real quadratic field.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
16. (a) Find all solutions of $999 x-49 y=5000$.

Or

(b) Find all solutions in integers of $2 x+3 y+4 z=5$.
17. (a) Prove that the positive primitive solutions of $x^{2}+y^{2}=z^{2}$ with y even are $x=r^{2}-s^{2}$, $y=2 r s, \quad z=r^{2}+s^{2}$, where r and s are arbitrary.

Or
(b) Prove that the equation $15 x^{2}-7 y^{2}=9$ has no solution in integers.
18. (a) Prove that two distinct infinite simple continued fractions converge to different values.

Or
Page $5 \quad$ Code No. : 6321
(b) Expand $\sqrt{2}-1$ as an infinite simple continued fraction.
19. (a) If $\frac{a}{b}$ is a rational number with positive denominator such that $\left|\xi-\frac{a}{b}\right|<\left|\xi-\frac{h_{n}}{k_{n}}\right|$ for some $n \geq 1$, then prove that $b>k_{n}$.

Or
(b) Prove that if α is any algebraic number, then there is a rational integer b such that $b \alpha$ is an algebraic integer.
20. (a) If γ is an integer in $\mathbf{Q}(\sqrt{m})$, then prove that $N(\gamma)= \pm 1$ iff γ is a unit.

Or

(b) Let m be a negative square - free rational integer. Then prove that the field $\mathbf{Q}(\sqrt{m})$ has units ± 1.
(8 Pages)

Code No. : 6322

Reg. No. : \qquad

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester

Mathematics

Elective - CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answers :

1. The sufficient condition that y be a maximum or minimum at x_{0}, if
(a) $\frac{d^{2} y}{d x^{2}}<0$ (or) $\frac{d^{2} y}{d x^{2}}>0$ at x_{0}
(b) $\frac{d^{2} y}{d x^{2}}=0$ (or) $\frac{d^{2} y}{d x^{2}}>0$ at x_{0}
(c) $\frac{d^{2} y}{d x^{2}}>0$ (or) $\frac{d^{2} y}{d x^{2}}<0$ at x_{0}
(d) $\frac{d^{2} y}{d x^{2}}=0$ (or) $\frac{d^{2} y}{d x^{2}}=0$ at x_{0}
2. The operators δy and $\frac{d}{d x}$ are commutative if
(a) $\frac{d}{d x} \delta y=\delta \frac{d y}{d x}$
(b) $\frac{d}{d y} \delta x=\delta \frac{d x}{d y}$
(c) $\frac{d}{d x} \delta y \neq \delta \frac{d y}{d x}$
(d) $\frac{d}{d y} \delta x \neq \delta \frac{d x}{d y}$
3. The variational of a functional is a first order approximation to change in that function
(a) along a particular curve
(b) from curve to curve
(c) along a straight line
(d) none of these
4. The derivative of the variation with respect to an independent variable is same as
(a) differentiation of derivative
(b) variation of the derivative
(c) independent derivation
(d) variational of functional

Page $2 \quad$ Code No. : 6322
5. Volterra equation is
(a) $\alpha(x) y(x)=F(x)+\lambda \int_{a}^{b} K(x, \xi) y(\xi) d \xi$
(b) $\alpha(x) y(x)=\lambda \int_{a}^{b} K(x, \xi) y(\xi) d \xi$
(c) $\quad \alpha(x) y(x)=F(x)+\lambda \int_{a}^{x} K(x, \xi) y(\xi) d \xi$
(d) $\alpha(x) y(x)=\lambda \int_{a}^{x} K(x, \xi) y(\xi) d \xi$
6. Volterra equation of the second kind is
(a) $\quad F(x)=\int_{a}^{x}(x-\xi) f(\xi) d \xi+\left[A(a) y_{0}+y_{0}^{1}\right](x-\alpha)+y_{0}$
(b) $\quad F(x)=\int_{a}^{x}(x-\xi) f(\xi) d \xi+y_{0}$
(c) $\quad F(x)=\int_{a}^{x}(x-\xi) f(\xi) d \xi$
(d) None of these

Page $3 \quad$ Code No. : 6322
7. Green's function is symmetric if
(a) $G(x, \xi)=G(\xi, x)$
(b) $G(x, \xi)=G(0, \xi)$
(c) $G(x, \xi)=G(x, 0)$
(d) None of these
8. If $\Delta=0$, then the integral equation $y(x)=\lambda \int_{a}^{b} K(x, \xi) y(\xi) d \xi+F(x)$ has
(a) finite solutions
(b) infinitely many solutions
(c) no solution
(d) only one solution
9. The necessary condition for trivial solution $y(x)=0$ is
(a) $\lambda=0$
(b) $\lambda \neq 0$
(c) $\lambda>0$
(d) $\lambda<0$
10. The characteristic numbers of a Fredholm equation with a real symmetric Kernel are
(a) all imaginary
(b) all real
(c) imaginary and real
(d) none of these

Page 4 Code No. : 6322
[P.T.O]

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b)
11. (a) Determine the point on the curve of intersection of the surfaces $z=x y+5$, $x+y+z=1$ nearest to the origin.

Or
(b) Derive the necessary and sufficient condition for $z=f(x, y)$ to passes a relative maximum or minimum in a region R at $\left(x_{0}, y_{0}\right)$.
12. (a) Show that if x is the independent variable, the operators δ and $\frac{d}{d x}$ are commutative.

Or
(b) Show that if stationary function for an integral functional in one for which the variation of that integral is zero.
13. (a) Transform $\frac{d^{2} y}{d x^{2}}+\lambda y=f(x), y(0)=1, y^{\prime}(0)=0$ into integral equation.

Or
(b) Derive the volterra equation of the second kind of integral equation.

Page $5 \quad$ Code No. : 6322
14. (a) Find the cause and effect of linear equation.

Or

(b) Give a short notes on Fredholm equations with separable.
15. (a) With suitable example, show that a continuous function Φ can be represented over (a, b) be a linear combination of the characteristic functions $y_{1}(x), y_{2}(x) \ldots$ of the homogenous Fredholm integral equation with $K(x, \xi)$ as its Kernel.

Or
(b) Find the solution of Fredholm equation

$$
y(x)=1+\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi
$$

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
16. (a) Find the conditions of stationary functions associated with integral $I=\int_{0}^{1}\left(T y^{\prime 2}-\rho w^{2} y^{2}\right) d x$.

Or
Page 6 Code No. : 6322
(b) Find the maximum (or) minimum value of a continuously differentiable function $y(x)$ for which the integral $I=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x$ and with end conditions $y_{1}=y\left(x_{1}\right), y_{2}=y\left(x_{2}\right)$.
17. (a) Find the minimum area of the equation of the surface is in the form $Z=z(x, y)$. The area to be minimized $S=\iint_{R}\left(1+Z_{x}^{2}+Z_{y}^{2}\right)^{1 / 2} d x d y$.

Or
(b) Determine the curve of length l with passes through the points $(0,0)$ and $(1,0)$ and for which the area I between the curve and x axis is a maximum.
18. (a) Find the Fredholm equation of second kind from the corresponding boundary - value problem.

Or

(b) Show that the relation $y(x)=\int_{a}^{b} G(x, \xi) \phi(\xi) d \xi$ gives the differential equation $L y+\Phi(x)=0$ together with boundary conditions.
19. (a) Derive the conditions to determine a influence function if the string is rotating uniformly about x axis with angular velocity w.

Or
(b) Show that the integral equation $y(x)=\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi+F(x)$ can be written as the sum of $F(x)$ and sum of linear combinations of the characteristic functions.
20. (a) State and prove Hilebert - Schmidt thoeyr.

Or
(b) Solve $\int_{a}^{b} K(x, \xi) \phi(\xi) d \xi$ if $K(x, \xi)=\sin (x+\xi)$ and $(a, b)=(0,2 \pi)$.
(6 Pages)

Code No. : 6323 Sub. Code : PMAE 33

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester

Mathematics
Elective - FORMAL LANGUAGES AND AUTOMATA THEORY
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answers :

1. The language is a if it is the set accepted by some finite automation.
(a) Regular set
(b) Just regular
(c) (a) and (b)
(d) Language accepted
2. The language accepted by
(a) DFA
(b) NFA
(c) (a) and (b)
(d) Not DFA
3. The regular sets are closed
(a) Union
(b) Concatenation
(c) Kleene closure
(d) All
4. Every finite automation induces a invariant equivalence relation.
(a) Right invariant
(b) Left invariant
(c) Index
(d) Invariant
5. A context-free grammar is a finite set of each of which represents a language.
(a) Syntactic categories
(b) Non terminals
(c) Terminals
(d) All
6. A string of \longrightarrow, α is called a sentential form if $\mathrm{S}^{*} \Rightarrow a$
(a) Terminals
(b) Variables
(c) (a) and (b)
(d) Equivalent

Page $2 \quad$ Code No. : 6323
7. Push down automation will have an
(a) Input tape
(b) Finite control
(c) Stack
(d) All
8. The push down automation is essentially a finite automaton with control of
(a) Input tape
(b) Stack
(c) First in first out
(d) All
9. The context free language are not closed under
(a) Intersection
(b) Complementation
(c) (a) and (b)
(d) Homomorphism
10. If L is a CFL is under intersection with a regular set.
(a) Closed
(b) Not closed
(c) Union
(d) All

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Explain regular expressions with an example.

Or
(b) Explain finite automata with ε-moves.

Page $3 \quad$ Code No. : 6323
12. (a) Prove that the class of regular set is closed under substitution.

Or
(b) Write the algorithm for marking pairs of in equivalent states.
13. (a) Define derivation tress with an example.

Or

(b) Write the Greibach normal - form algorithm.
14. (a) If L is a context-free language then prove that there exist a PDA M such that $L=M(N)$.

Or
(b) Explain accepted languages.
15. (a) Prove that the CFL's are not closed under intersection.

Or
(b) State and prove Ogden's lemma.

Page 4 Code No. : 6323
[P.T.O]

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If L is accepted by an NFA with ε-transitions then prove that L is accepted by an NFA without ε-transitions.

Or

(b) If L is accepted by a DFA then prove that L is denoted by a regular expression.
17. (a) State and prove pumping lemma for regular set.

Or

(b) State and prove Myhill-Nerode theorem.
18. (a) Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ be a context-free grammar. Then prove that $\mathrm{S}^{*} \Rightarrow \alpha$ iff there is a derivation tree in grammar G with yield α.

Or

(b) Given a GFG $G=(V, T, P, S)$ with $L(G) \neq \Phi$ find an equivalent CFG $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{T}, \mathrm{P}, \mathrm{S}\right)$ such that for each A in V^{\prime} there is some w in T^{*} for which $\mathrm{A}^{*} \Rightarrow \mathrm{w}$.

Page $5 \quad$ Code No. : 6323
19. (a) Let L is $N(M)$ for some PDA M then prove that L is a context - free language.

Or
(b) Explain push down automation with an example.
20. (a) State and prove pumping lemma for contextfree language.

Or
(b) Prove that the context free languages are closed under inverse homomorphism.
(6 pages) Reg. No. :
\qquad
Code No. : 6303Sub. Code : PMAM 11/ZMAM 11
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021
First Semester
Mathematics - Core
ALGEBRA - I
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - (10×1 = 10 marks $)$Answer ALL questions.
Choose the correct answer:

1. Let G be the group of integers under addition and let N be the set of all multiples of 3 . Then $O(G / N)$ is
(a) 1
(b) 2
(c) 3
(d) infinity
2. If ϕ is a homomorphism of G in to \bar{G}, the kernel of ϕ is a subgroup of
(a) G
(b) \bar{G}
(c) $G \times \bar{G}$
(d) $\bar{G} \times G$
3. Let G be a group of order 36 . Suppose that G has a subgroup H of order 9 . Then $i(H)$ is
(a) 4
(b) 45
(c) $9 i+36$
(d) 9
4. Let G be a group; for $g \in G$, the inner automorphism T_{g} is defined by
(a) $x T_{g}=x g$
(b) $x T_{g}=g^{-1} x g$
(c) $x T_{g}=g x$
(d) $x T_{g}=x g g^{-1}$
5. If $\theta=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)$ and $\Psi=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{array}\right)$ then $\theta \Psi$ is
(a) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$
(c) $\quad\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$
(d) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{array}\right)$
6. The value of $P(5)$ is
(a) 6
(b) 5
(c) 7
(d) 10

Page 2 Code No. : 6303
7. If $O(G)=72$, the number of 3 - sylow subgroups of G is
(a) either 1 or 3
(b) either 1 or 4
(c) exactly 1
(d) either 1 or 4 or 8
8. The order of a 3 - sylow subgroup of a group of order 18 is
(a) 9
(b) 18
(c) 3
(d) 6
9. The number of non isomorphic abelian groups of order 3^{4} is
(a) 4
(b) 3^{4}
(c) 5
(d) 3
10. If G is an abelian group and s is any integer then $G(s)$ is defined by
(a) $\left\{x \in G / x^{s}=e\right\}$
(b) $\{x \in G / o(x)=s\}$
(c) $\left\{x \in G / x^{s}=x\right\}$
(d) $\left\{x \in G / x^{s} \neq e\right\}$

Page $3 \quad$ Code No. : 6303

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) If H and K are two subgroups of G, define $H K$ and give an example to show that $H K$ need not be a subgroup of G.

Or
(b) Prove that N is a normal subgroup of G if and only if $g N g^{-1}=N$ for every $g \in G$.
12. (a) Let G be a group and ϕ an automorphism of G. If $a \in G$ is of order $0(a)>0$, prove that $0(\phi(a))=0(a)$.

Or

(b) Define a solvable group and show that a subgroup of a solvable group is solvable.
13. (a) Prove that A_{n} is a normal subgroup of index 2 in S_{n}.

Or
(b) If $O(G)=P^{2}$ where P is a prime number, show that G is abelian.

Page $4 \quad$ Code No.: 6303
[P.T.O.]
14. (a) State and prove the second part of sylow's theorem.

Or

(b) Prove that any group of order $11^{2}-13^{2}$ must be abelian.
15. (a) Suppose that G is the internal direct product of $N_{1}, N_{2} \ldots, N_{n}$. Then for $i \neq d$, Prove that $N_{i} \cap N_{j}=(e)$ and if $a \in N_{i}, b \in N_{j}$, then $a b=b a$.

Or
(b) If G and G^{\prime} are isomorphic abelian groups, then for every integer s, show that $G(s)$ and $G^{\prime}(s)$ are isomorphic.

$$
\text { PART C }-(5 \times 8=40 \text { marks })
$$

Answer ALL questions, choosing either (a) or (b).
16. (a) Let H and K be subgroup of G, Prove that $H K$ is a subgroup of G if and only if $H K=K H$.

Or
(b) Let ϕ be a hormomorphism of G onto \bar{G} with kernel k. Prove that $G / K \approx \bar{G}$.

Page $5 \quad$ Code No. : 6303
17. (a) State and prove Cayley's theorem.

Or
(b) Prove that $\vartheta(G) \approx G / Z$, where $\vartheta(G)$ is the group of inner automorphisms of G and Z is the center of \underline{G}.
18. (a) If $O(G)=p^{n}$ where p is a prime number, prove that $Z(G) \neq(e)$.

Or
(b) Prove that the number of conjugate classes in S_{n} is $P_{(n)}$, the number of partitions of n.
19. (a) State and prove the third part of Sylow's theorem.

Or
(b) If G is a group of order 231. Prove that the 11-Sylow subgroup is in the center of G.
20. (a) Define the internal and external direct product of normal subgroups and show that they are isomorphic.

Or
(b) Show that every finite abelian group is the direct product of cyclic groups.

Page 6 Code No. : 6303
(8 Pages)

Code No. : 6304

Reg. No.: \qquad ZMAM 12

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

First Semester
Mathematics - Core
ANALYSIS - I
(For those who joined in July 2017 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10 \mathrm{marks})$
Answer ALL questions.
Choose the correct answers :

1. Let (X, d) be a metric space when X is the set of all real numbers. If every infinite subset of X is open then
(a) all finite sets are not open
(b) all finite sets are also open
(c) d is usual metric
(d) can not say
2. Every interval [a,b] $a<b$ is
(a) countable and perfect
(b) uncountable and not perfect
(c) uncountable and perfect
(d) countable and not perfect
3. If $p>0$, then $\lim _{n \rightarrow \infty}\left(\frac{1}{p}\right)^{\frac{1}{n}}=$
(a) 0
(b) 1
(c) ∞
(d) not convergent
4. If $|x|>1$, then $\lim _{n \rightarrow \infty} x^{n}=$
(a) 0
(b) 1
(c) ∞
(d) ∞ or $-\infty$
5. Let $a_{n} \geq 0 \forall n$ and $\alpha=\lim _{n \rightarrow \infty} \sup \left(\frac{a_{n+1}}{a_{n}}\right)$ Then , $\sum_{n} a_{n}$ converges if α
(a) >1
(b) $=1$
(c) <1
(d) >0
6. The radius of convergence of the series $\sum_{n} \frac{z^{n}}{n^{3}}$ is
(a) 0
(b) 1
(c) ∞
(d) 3
7. The function $f(x)=\left\{\begin{array}{cc}\sqrt{2} & x \text { is rational } \\ x & \text { otherwise }\end{array}\right.$ is discontinuous at
(a) of first kind at $\sqrt{2}$
(b) of second kind at $\sqrt{2}$
(c) of first kind at $\mathbb{R}-(\sqrt{2})$
(d) of second kind at $\mathbb{R}-(\sqrt{2})$
8. Let $f: X \rightarrow Y$ be a monotonic decreasing function. Then the number of discontinuities of first kind is
(a) 0
(b) has to be finite
(c) atmost countably infinite
(d) can be uncountably infinite
9. Let f be defined for all real numbers and suppose that for all real numbers x, y $|f(x)-f(y)| \leq(x-y)^{2}$, then
(a) f is monotonically increasing
(b) f is monotonically decreasing
(c) f is constant
(d) none of the above
10. Let f be a differentiate function. Then the number of simple discontinuities of f^{\prime} is
(a) 0
(b) atmost countably infinity
(c) can be uncountably infinite
(d) none of the above

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b)
11. (a) Define the terms neighborhood, limit point. Show that if p is a limit point of a set E, then every neighborbood of p contains infinitely many points of E.

Or
(b) Define connected set. What are the connected subsets of the real line. Justify your answer.
12. (a) Define terms subsequence, subsequential limit. Prove that the subsequential limits of a sequence (p_{n}) in a metric space X is a closed set in X.

Or

(b) Define the terms monotonic sequence, bounded sequence. Prove that a bounded monotonic sequence is convergent.

$$
\text { Page } 4 \quad \text { Code Nop.T.O304 }
$$

13. (a) State and prove ratio test.

Or

(b) State and prove Leibnitz theorem.
14. (a) (i) Let X, Y be two metric spaces. Let $f: X \rightarrow Y$ be a continuous mapping. Then prove that $f(\bar{E}) \subseteq \overline{f(E)}$ for every subset E of X.
(ii) Also prove that this inclusion can be proper.

Or
(b) (i) Define discontinuities of first kind and second kind.
(ii) Prove that if f is a monotonic function defined on (a, b), the number of points at which f is discontinuous is not uncountable.
15. (a) (i) Define local maximum.
(ii) If f is defined in $[a, b]$ and f has a local maximum at a point $x \in(a, b)$ and if $f^{\prime}(x)$ exists then prove that it is 0 . Also state L'Hospital's rule.

Or
(b) State and prove Taylor's theorem.

Page $5 \quad$ Code No. : 6304

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b)
16. (a) Define perfect set, Cantor set. Prove that Cantor set is perfect.

Or
(b) Define the terms compact set, k-cell. Prove that every k-cell is compact.
17. (a) (i) Define the number e.
(ii) Prove that $2<e<3$.
(iii) Prove that $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
(iv) Prove that the number e is not rational.

Or

(b) (i) Define the terms convergent sequence and Cauchy sequence.
(ii) Prove that convergence sequence is a Cauchy sequence and the converse holds if the space is compact.
(iii) Prove that in \mathbb{R}^{k}, a Cauchy sequence is convergent.
18. (a) (i) Define absolute convergence of a series.

Page $6 \quad$ Code No. : 6304
(ii) Prove that absolute convergence implies convergence but not conversely.
(iii) If $\sum_{n} a_{n}=A ; \sum_{n} b_{n}=B ; \sum_{n} a_{n} \quad$ converges absolutely and $c_{n}=\sum_{k=0}^{n} a_{n} b_{n-k}$, then prove that $\sum_{n} c_{n}=A B$.

Or

(b) State and prove root test. Deduce that $\frac{2}{3}+\frac{3}{5}+\left(\frac{2}{3}\right)^{2}+\left(\frac{3}{5}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\frac{3}{5}\right)^{3}+\cdots \quad$ is convergent.
19. (a) Define compact set and connected set. Prove that the continuous image of a compact is compact and connected set is connected.

Or

(b) (i) Define monotonic functions.
(ii) Let f be monotonically increasing on (a, b). Prove that $f(x,+)$ and $f(x,-)$ exist for all x in (a, b) and is such that $\sup _{a<t<x} f(t)=f(x,-) \leq f(x) \leq f(x,+)=\inf _{x<t<b} f(t)$. Also prove that $a=x \leq y=b \Rightarrow$ $f(x,+) \leq f(y,-)$
20. (a) (i) State and prove chain rule of differentiation.
(ii) Let f be defined as $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x=0)\end{array}\right.$. Prove that $f^{\prime}(0)$ does not exist.
(iii) Let f be defined as $f(x)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x=0)\end{array}\right.$. Prove that $f^{\prime}(0)=0$.

Or
(b) (i) State and prove Generalised mean value theorem.
(ii) Discuss the behaviour of f according as (1) $f^{\prime}(x) \geq 0$; (2) $f^{\prime}(x)=0$; (3) $f^{\prime}(x) \leq 0$.
(iii) Suppose f is real differentiable on [a,b] and suppose $f^{\prime}(a)<\lambda<f^{\prime}(b)$, then there exists x such that $a<x<b$ and $f^{\prime}(x)=\lambda$.
(6 pages)
Code No. : 6306
Reg. No. :

Sub. Code : PMAM 14/

ZMAM 15
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

First Semester
Mathematics - Core
ORDINARY DIFFERENTIAL EQUATIONS
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. If $y_{1}=8 m x, y_{2}=10 m x$ are solutions of the linear ordinary differential equation, then Wronskian is
(a) 1
(b) 0
(c) -1
(d) ± 1
2. Two independent solutions of $y^{\prime \prime}-y=0$ are
(a) x, x^{2}
(b) $\cos x, \sin x$
(c) $\quad \log x, \frac{1}{x}$
(d) e^{x}, e^{-x}
3. $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$ is
(a) $\frac{1}{1-x}$
(b) $\frac{1}{1+x}$
(c) $\quad \log (1+x)$
(d) $\tan ^{-1} x$
4. $\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3.2^{3}}+\frac{1.3}{2.4} \cdot \frac{1}{5.2^{5}}+\frac{1.3 .5}{2.4 .6} \cdot \frac{1}{7.2^{7}}+\ldots$
(a) $\frac{\pi^{2}}{3}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi^{2}}{3}$
(d) $\frac{\pi}{4}$
5. If x_{0} is a singular point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ then
(a) $\quad P(x)$ is not analytic x_{0}
(b) $\quad Q(x)$ is not analytic x_{0}
(c) either (a) or (b)
(d) either (a) or (b) or both (a) or (b)
6. The singular points of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$ are
(a) 1,0
(b) $0,-1$
(c) $1,-1$
(d) 1,2
7. $\quad P_{n}(-1)=$
(a) 1
(b) -1
(c) $(-1)^{n}$
(d) 0
8. $\int_{-1}^{1} P_{n}^{2}(x) d x=$
(a) $\frac{1}{2 n+1}$
(b) $\frac{n}{n+1}$
(c) $\frac{2 n}{2 n+1}$
(d) $\frac{2}{2 n+1}$
9. $\left(-\frac{1}{2}\right)!=$
(a) e
(b) π
(c) $\sqrt{\pi}$
(d) none
10. The homogeneous system $\frac{d x}{d t}=4 x-y ; \frac{d y}{d t}=2 x+y$ has solution
(a) $x=e^{3 t}, y=e^{3 t}$
(b) $x=e^{2 t}, y=2 e^{2 t}$
(c) both (a) and (b)
(d) neither (a) nor (b)

Page $3 \quad$ Code No. : 6306

PART B- ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Solve the initial value problem $y^{\prime \prime}+y=0$,

$$
y(0)=0 \text { and } y^{\prime}(0)=1
$$

Or
(b) Solve $y^{\prime \prime}+y=0, y(0)=2$ and $y^{\prime}(0)=3$
12. (a) Find a power series solution of $(1+x) y^{\prime}=p y$, $y(0)=1$.

Or
(b) Find the radius of convergence for $\sum_{0}^{\infty} n!x^{n}$ and $\sum_{0}^{\infty} \frac{x^{n}}{n!}$
13. (a) Define the Legendre polynomial $P_{n}(x)$.

Or
(b) Describe Legendre series.
14. (a) Define $J_{p}(x)$. Also find $J_{0}(x)$ and $J_{1}(x)$.

Or
(b) Prove that $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$ Page 4 Code No.: 6306
[P.T.O]
15. (a) Find $P_{n}(x)$ for $n=1,2,3$

Or
(b) Show that the Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$ has only Frobenius series solution.

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions $\quad y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \quad$ on $\quad[a, b]$, Prove that $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is the general solution for a suitable choice of constants c_{1} and c_{2}.

Or
(b) If $y_{1}(x)$ is a known solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ describe how you will find another solution.
17. (a) Solve $y^{\prime \prime}+y=0$ to find a power series solution.

Or
(b) Obtain power series expansions for $e^{x}, \sin x, \cos x$

Page $5 \quad$ Code No. : 6306
18. (a) Prove that $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$

Or

(b) State and prove the orthogonal property of Legendre polynomials.
19. Find two independent Frobenius solutions of the following equations:
(a) $x y^{\prime \prime}+2 y^{\prime}+x y=0$.

Or
(b) $x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0$
20. (a) Find the general solution of the system

$$
\frac{d x}{d t}=3 x-4 y ; \frac{d y}{d t}=x-y
$$

Or
(b) Find the general solution of the system

$$
\frac{d x}{d t}=x+y ; \frac{d y}{d t}=4 x-2 y
$$

(8 Pages)

Code No. : 6316

Reg. No. : \qquad

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021.

Third Semester
MATHEMATICS — CORE
MEASURE AND INTEGRATION
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - (10 $\times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answers :

1. Which one of the following is not true
(a) outer measure is defined for all sets of real numbers
(b) the outer measure of an interval is its length
(c) outer measure is countably additive
(d) outer measure is translation in variant
2. If A is a measurable set of finite outer measure that is contained in B then $m^{*}(B \sim A)-m^{*}(B)$ is
(a) $-m^{*}(A)$
(b) $m^{*}(A)$
(c) $m^{*}(A \cup B)$
(d) zero
3. For a function f defined on $E, f^{-}(x)$ is defined by
(a) $\max \{f(x), 0\}$
(b) $\max \{f(x),-f(x)\}$
(c) $\max \{-f(x), 0\}$
(d) $-\max \{f(x), 0\}$
4. Let A and B be any sets, then $\chi_{A \cup B}$ is
(a) $\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B}$
(b) $\chi_{A}+\chi_{B}$
(c) $\chi_{A}+\chi_{B}+\chi_{A \cap B}$
(d) $\chi_{A} \cdot \chi_{B}$
5. The set E of rational number in $[0,1]$ is a measurable set of measure
(a) 1
(b) 0
(c) ∞
(d) $\sqrt{2}$
6. Let f be a bounded measurable function on a set of finite measure E, suppose A, B are disjoint measurable subsets of E, then $\int_{A u B} f$ is
(a) $\int_{A} f$
(b) $\int_{B} f$
(c) $\int_{A} f+\int_{B} f$
(d) $\int_{A} f-\int_{B} f$
7. The average value function $A v_{h} f$ of $[a, b]$ is defined by
(a) $A v_{h} f(x)=\frac{1}{h} \int_{x}^{x+h} f \forall x \in[a, b]$
(b) $A v_{h} f(x)=\frac{\left(\int_{x}^{x+h} f\right)}{x} \forall x \in[a, b]$
(c) $A v_{h} f(x)=\frac{\left(\int_{x}^{x+h} f\right)}{l-a} \forall x \in[a, b]$
(d) $A v_{h} f(x)=\frac{f(x+h)-f(x)}{h} \forall x \in[a, b]$
8. If the function f is monotone on the open interval (a, b) then it is differentiable a.e. on $(9,4)$ this result is known as
(a) Jordan's theorem
(b) Lebesgue's theorem
(c) Mean value theorem
(d) Vital's theorem
9. Which one of the following is not true
(a) Absolutely continuous functions are continuous
(b) Sum of two absolutely continuous functions is absolutely continuous
(c) Composition of absolutely continuous functions is absolutely continuous
(d) Linear combination of absolutely continuous functions is absolutely continuous
10. The function f defined on $[0,1]$ by $f(x)=\sqrt{x}$ for $10 \leq x \leq 1$ is
(a) both absolutely continuous and Lipschitz
(b) neither absolutely continuous nor Lispchitz
(c) absolute continuous but not lipchitz
(d) lipchitz but not absolutely continuous

Page $4 \quad$ Code No. : 6136
[P.T.O]

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b)
Each answer should not exceed 250 words.
11. (a) Prove that outer measure is countably subadditive.

Or
(b) State and prove the Borel - Cantelli lemma.
12. (a) Prove that f is measurable if and only if for each open set 0 , the inverse image of 0 under $f, f^{-1}(0)$, is measurable.

Or
(b) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges point wise a.e. on E to the function f. Prove that f is measurable.
13. (a) Let f be a bounded measurable function on a set of finite measure E. Prove that f is integrable over E

Or

Page $5 \quad$ Code No. : 6136
(b) Let f be a non negative measurable function on E. Prove that $\int_{E} f=0$ if and only if $f=0$ a.e. on E.
14. (a) Let f be integrable over E and $\left\{E_{n}\right\}_{n=1}^{\alpha}$ a disjoint countable collection of measurable subsets of E whose union is E. Prove that $\int_{E} f=\sum_{n=1}^{\infty} \int_{E_{n}} f$.

Or
(b) Let C be a countable subset of the open interval (a, b). Prove that there is an increasing function on (a, b) that is continuous only at points in $(a, b) \sim C$.
15. (a) Let f be integrable over $[a, b]$. Prove that $\frac{d}{d x}\left(\int_{a}^{x} f\right)=f(x)$ for almost all $x \in(a, b)$.

Or
(b) Let μ be a measure. Explain the method of obtaining the outer measure induced by μ.

Page $6 \quad$ Code No. : 6136

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.
16. (a) Prove that the outer measure of an interval is its length.

Or

(b) State the two continuity preparation of the Lebesgue measure and prove them.
17. (a) Let f and g be measurable functions on E that are finite a.e. on E. Prove that $\alpha f+\beta g$ and $f g$ are measurable on E for any α and β.

Or

(b) State and prove Egoroff's theorem.
18. (a) Let f and g bounded measurable functions on a set of finite measure E. Prove that $\int_{E} \alpha f+\beta g=\alpha \int_{E} f+\beta \int_{E} g$ for any α and β and show that if $f \leq g$ on E then $\int_{E} f \leq \int_{E} g$.

Or

(b) State and prove the boundary convergence theorem.

Page $7 \quad$ Code No. : 6136
19. (a) State and prove the Lebsegue dominated convergence theorem.

Or
(b) If the function f is monotone on the open interval (a, b), prove that it is differentiable almost everywhere on (a, b).
20. (a) Let the function f be absolutely continuous on $[a, b]$. Prove that f is the difference of increasing absolutely continuous functions and is of bounded variation.

Or

(b) State Hahn's lemma without proof and deduce the Hahn Decomposition theorem with proof.
(8 Pages)

Code No. : 6317

Reg. No. : \qquad
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester
MATHEMATICS — CORE
TOPOLOGY - I
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answers :

1. Let Y be a sub space of X. If U is open in Y then U is \quad in X.
(a) Open
(b) Closed
(c) Clopen
(d) None
2. A subset of a topological space is closed if and only if it contains \qquad
(a) All its limit points
(b) Only one of its limit points
(c) None of its limit points
(d) None
3. Let A be a subset of a topological space X and $x_{\varepsilon} X$. If every neighbourhood of X intersects A then x is
(a) An interior point of A
(b) A limit point of A
(c) A closed point of A
(d) None
4. Let X and Y be topological spaces; let $p: x \rightarrow y$ be a surjective map. The map p is called a __ map, provided a subset U of Y is open in Y if and only if $p^{-1}(U)$ is open in X.
(a) open
(b) inverse
(c) closed
(d) quotient
5. The set of limit points of the set $B=\{1 / n \mid n \varepsilon z\}$ is
(a) $\}$
(b) $\{0\}$
(c) $\{1\}$
(d) $\{2\}$
6. - is a compact space.
(a) R
(b) Q
(c) $(2,3)$
(d) $[4,5]$
7. A subspace of Hausdorff space
(a) is Hausdorff
(b) is not Hausdorff
(c) need not be Hausdorff
(d) none
8. A finite cartesion product of connected space
(a) Is always connected
(b) Need not be connected
(c) Is open
(d) None
9. Which is the following is true
(a) Every regular space is Hausdorff
(b) Every regular space is normal
(c) Every Hausdorff space is regular
(d) Every Hausdorff space is normal
10. Which of the following is true?
(a) A regular space is completely regular
(b) Every topological space has a metrization
(c) Every subspace of a completely regular space is regular
(d) None

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 250 words.
11. (a) Define product topology of two topological spaces and give examples.

Or
(b) Prove that every finite point set is a Hausdorff space is closed.
12. (a) State and prove the pasting lemma.

Or
(b) Let A be a subset of a topological space X and let A^{\prime} be the set of all limit points of A. Prove that $A=A \cup A^{\prime}$.

Page $4 \quad$ Code No. : 6317
[P.T.O]
13. (a) State and prove sequence lemma.

Or
(b) Prove that the topologies on R^{n} induced by the Euclidean metric d and the square metric ρ are the same as the product topology on R^{n}.
14. (a) Let $f: X \rightarrow Y$ be a bijective continuous function. If X is compact and Y is Hausdorff prove that f is a homeomeorphism.

Or
(b) Prove that the product of finitely many compact spaces is compact.
15. (a) Prove that compactness implies limit point compact but not conversely.

Or

(b) Prove that R^{n} is locally compact but R^{w} is not locally.

Page $5 \quad$ Code No. : 6317

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.
16. (a) Define finite compliment topology and a convergent sequence in a topological space. What are the closed sets in it?

Or

(b) If $\left\{J_{\alpha}\right\}$ be a family of topologies on X, show that $\cap J_{\alpha}$ is a topology on X. Is $\cup J_{\alpha}$ a topology on X ?
17. (a) Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a mapping. Prove that the following are equivalent.
(i) f is continuous
(ii) for every subset A of $X, f(A) \subset \overline{f(A)}$
(iii) for every closed set B of Y, the set $f^{-1}(B)$ is closed in X.

Or
(b) If X_{α} is a Hausdorff space for each α, prove that πX_{α} is a Hausdorff space in both the box and product topology.

Page $6 \quad$ Code No. : 6317
18. (a) Let $f: X \rightarrow Y$. If the function f is continuous prove that for every convergent sequence $x_{n} \rightarrow x$ in X, the sequence $f\left(x_{n}\right)$ and that the converse holds if X is metrizable.

Or
(b) Prove that R^{W} is connected in the product topology that not in the box topology.
19. (a) State and prove tube lemma.

Or
(b) Let A be a connected subset of X. If $A \subset B \subset \bar{A}$, then prove that B is also connected.
20. (a) Let X be a metrizable space. Prove that the following are equivalent.
(i) X is compact
(ii) X is limit point compact
(iii) X is sequentially compact.

Or
(b) Let X be a space. Prove that X is locally compact Hausdorff if and only if there exists a space Y satisfying the following conditions.
(i) X is a subspace of Y
(ii) The set $Y-X$ consists of a single point
(iii) Y is a compact Hausdorff space. If Y and Y^{\prime} are two spaces satisfying these conditions then there is a homoeomorphism of Y with Y^{\prime} that equals the identity map on X.
(7 Pages)

Code No. : 6318

Reg. No.: \qquad

M.Sc. (CBCS) DEGREE EXAMINATION,

 NOVEMBER 2021Third Semester
Mathematics - Core
ADVANCED ALGEBRA - I
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.

Choose the correct answers :

1. If V is a vector space than its dual space is
(a) $\operatorname{Hom}(V, V)$
(b) $\operatorname{Hom}(F, V)$
(c) $\operatorname{Hom}(V, F)$
(d) $\operatorname{Hom}(F, F)$
2. An orthonormal set consists of
(a) zero vector
(b) unit vector
(c) linearly dependent vector
(d) inner products
3. If $S, T \in A(V)$ and S is regular then $r(S T)=$
(a) $r(S)$
(b) $r(T)$
(c) 1
(d) 0
4. If $\lambda-1$ is singular then λ is
(a) also singular
(b) regular
(c) an eigen-value
(d) zero
5. The invariants of $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ are
(a) 1,1
(b) 5, 4
(c) 2,1
(d) 3,2

Page $2 \quad$ Code No. : 6318
6. If W is a subspace of V and $T \in A(V)$ are $W T \subset W$, then W
(a) equal T
(b) variant under T
(c) invariant under T
(d) has no other subspaces
7. Trace of A is defined when A is a matrix.
(a) triangular
(b) symmetric
(c) square
(d) skew-symmetric
8. If the matrix B is obtained from A by a permutation, which is odd, of the rows of A then $\operatorname{det} A=$
(a) $\operatorname{det} B$
(b) $-\operatorname{det} B$
(c) 0
(d) 1
9. If T is $A(V)$ is Hermitian then all its characteristic roots are
(a) real
(b) imaginary
(c) 0
(d) 1
10. If all the characteristic roots of a normal transformation are of absolute value 1 , then it is
(a) identity
(b) symmetric
(c) transitive
(d) unitary

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b)
11. (a) Show that if $\operatorname{dim} V=m$ then $\operatorname{dim} \operatorname{Hom}(V, V)=m^{2}$.

Or

(b) State and prove the Schwartz inequality on inner product spaces.
12. (a) If $S, T \in A(V)$ and if S is regular, prove that T and $S T S^{-1}$ have the same minimal polynomial.

Or

(b) If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.

Page $4 \quad$ Code No. : 6318
[P.T.O]
13. (a) If M, of dimension m, is cyclic with respect to T, then prove that $\operatorname{dim} M T^{k}$ is $m-k$.

Or
(b) Suppose $V=V_{1} \oplus V_{2}$, where V_{1}, V_{2} are subspaces of V invariant under T. If $T_{1} T_{2}$ are linear transformation induced by T on V_{1} and V_{2}, with minimal polynomials $p_{1}(x)$ and $p_{2}(x)$, respectively, show that the minimal polynomial of T is the lcm of $p_{1}(x)$ and $p_{2}(x)$.
14. (a) Prove that if all the elements in one row of A in F_{n} are multiplied by τ in F, then $\operatorname{det} A$ is multiplied by τ.

Or

(b) If two elements of A are equal, show that $\operatorname{det} A=0$, where A is an $\mathrm{m} \times \mathrm{n}$ matrix.
15. (a) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V onto an orthonormal basis of V.

Or

(b) If T is Hermitian and $v T^{k}=0$ for all $k \geq 1$ then prove that $v T=0$.

Page $5 \quad$ Code No. : 6318

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) If there is a homogeneous system of m equations in n unknowns with $n>m$, prove that if has a non-trivial solution.

Or

(b) If W is a subspace of a finite dimensional vector space V, then prove that V is the direct sum of W and its orthogonal complement.
17. (a) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in F are distinct characteristic roots of T in $A(V)$ and is $v_{1}, v_{2}, \ldots, v_{k}$ are characteristic vectors belonging to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ respectively, show that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent.

Or

(b) Show that $A(V)$ and F_{n} are isomorphic algebras.
18. (a) If $T \in A(V)$ has all its characteristics roots in F, show that this is a basis of V in which the matrix of T is triangular.

Or

Page $6 \quad$ Code No. : 6318
(b) If $T \in A(V)$ is nilpotent, prove that there exists a subspace of W of V, invariant under T, such that $V=V_{1} \oplus W, V_{1}$ is spanned by $v, v T, \ldots \ldots, v T^{n_{1}-1}$.
19. (a) If F is a field of characteristic 0 , and if $\operatorname{tr} T^{i}=0$ for all $i \geq 1$, prove that T is nilpotent.

Or
(b) For A, B in F_{n}, prove that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
20. (a) If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis of V and if $\left(a_{i j}\right)$ is the matrix of T in $A(V)$, prove that the matrix of T^{*} in this basis is $\left(\beta_{i j}\right)$ where $\beta_{i j}=\overline{\alpha_{i j}}$.

Or

(b) If N is a normal linear transformation on V, prove that there exists an orthonormal basis in which the matrix of N is diagonal.
(8 pages)

Code No. : 6319

Reg. No. : \qquad
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester
Mathematics - Core

OPERRATIONS RESEARCH

(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks

$$
\text { PART A }-(10 \times 1=10 \text { marks })
$$

Answer ALL questions.
Choose the correct answer:

1. The starting basic feasible solution consists of
\qquad variables.
(a) $m+n-1$
(b) $m+n+1$
(c) $m+n-2$
(d) None
2. The supply amount at each source and the demand amount at each destination exactly equals 1 is \qquad
(a) Transportation model
(b) Assignment model
(c) Both (a) and (b)
(d) None
3. Traffic intensity $\rho=$ \qquad
(a) $\mu \lambda$
(b) $\frac{\mu}{\lambda}$
(c) $\frac{\lambda}{\mu}$
(d) $\lambda-\mu$
4. $\lambda_{\text {eff }}$ is \qquad
(a) $<\lambda$
(b) $\leq \lambda$
(c) $=\lambda$
(d) λ lost
5. Which operation is used in Floyd's algorithm
(a) one
(b) double
(c) triple
(d) None
6. To find shortest route between two given nodes in a network we use
(a) Hungarian method
(b) Dijikstra's algorithm
(c) Floyd's Alogorithm
(d) Maximal Flow algorithm

Page $2 \quad$ Code No. : 6319
7. In the fractional cut we have taken only
\qquad fractions.
(a) Positive
(b) Negative
(c) Improper
(d) None
8. \qquad algorithm is the first special $0-1$ algorithm.
(a) Binary
(b) Zero-one
(c) additive
(d) multiplicative
9. When the inventory drops to a certain level, the order placed is called
(a) periodic point
(b) price break point
(c) re order point
(d) both (b) and (c)
10. If the product has been brought with a discount the inventory policy follows
(a) classic EOQ model
(b) probabilistic EOQ model
(c) EOQ with price breaks
(d) multiple EOQ

Page $3 \quad$ Code No. : 6319

PART B - $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Find the Initial basic feasible solution by the Vogel's Approximation method.

5	1	7	
	10		
6	4	6	
3	2	50	
75	20	50	
Or			

(b) Solve the assignment problem

	1 2 3 4 1 4			
I	1	4	6	3
II	9	7	10	9
III	4	5	11	7
	8	7	8	

12. (a) A hiker has a $5 \mathrm{ft}^{3}$ backback and needs to desire onto most valuable items to take on hiking trip. There are three items from which to choose. Their volumes are 2,3 and 4 ft^{3} and the hiker estimates their associated value on a scale from $0-100$ as 30,50 and 70 respectively. Express the problem as the longest route network and find the optimal solution.

> Or

Page $4 \quad$ Code No. : 6319
[P.T.O.]
(b) Find the Critical path for the following network :

13. (a) Solve the following IPP
$\operatorname{Max} z=7 x_{1}+10 x_{2}$
sbt

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 10 \\
& 3 x_{1}+x_{2} \leq 15 \\
& x_{1}, x_{2} \geq 0 \text { integers. }
\end{aligned}
$$

Or
(b) Explain Branch and Bound Algorithm.
14. (a) Given that $E O Q=1000, D=100, \sigma=10$, $\alpha=0.05$ and $L=8$. Find μ_{L}, σ_{L} and the lower limit of buffer size.

Or
(b) Determine the optimal inventory policy and the associated cost per day in which no shortage is allowed and the lead time is 30 days. Also given that $\mathrm{k}=\$ 100, \mathrm{~h}=\$ 0.05$ and $\mathrm{D}=30$ units per day.

Page $5 \quad$ Code No.: 6319
15. (a) Explain pure birth model.

Or
(b) If $(M / M / 1):(G D / \infty / \infty)$ model, find $\mathrm{L}_{\mathrm{s}}, \mathrm{W}_{\mathrm{s}}$, and W_{q}.

PART C - (5 $\times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a)

\left.| 10 | 2 | 20 | 11 | 15 |
| :--- | :--- | :--- | :--- | :--- |
| 12 | 7 | 9 | 20 | 25 |
| 4 | 14 | 16 | 18 | 10 |
| 15 | | | | 15 | 15$\right) 50$

Given $\quad x_{12}=15, x_{23}=15, x_{24}=10, x_{22}=0$,
$x_{31}=5$ and $x_{34}=5$. Is it an optimal solution to the transportation problem.

Or
(b) Solve the assignment problem using Hungarian method.

	A	B	C	D	E
I	3	8	2	10	3
II	8	7	2	9	7
III	6	45	2	3	5
IV	8	4	2	3	5
V	9	10	6	9	10

Page $6 \quad$ Code No. : 6319
17. (a) Explain man-flow algorithm.

Or
(b)

Activity	Predecessor	a	m	b
A	-	5	6	7
B	-	1	3	5
C	-	1	4	7
D	A	1	2	3
E	B	1	2	9
F	C	1	5	9
G	C	2	2	8
H	E, F	4	4	10
I	D	2	5	8
J	H, G	2	2	8

(i) Compute the project network.
(ii) Find the expected duration and variance of each activity.
(iii) Find the critical path and expected project completion time.
(iv) What is the probability of completing the project on or before 22 weeks?
18. (a) Solve the following integer programming problem to Branch and Bound technique :
$\operatorname{Max} z=10 x_{1}+20 x_{2}$
sbt to

$$
\begin{gathered}
6 x_{1}+8 x_{2} \leq 48 \\
x_{1}+3 x_{2} \leq 12 \\
x_{1}, x_{2} \geq 0 \text { integers. }
\end{gathered}
$$

Or

(b) Explain Gomory's cutting plane algorithm.

Page $7 \quad$ Code No. : 6319
19. (a) The following data describe 3 inventory items. Determine the optimal order quantities.

Item i	ki $\$$	Di unit/day	hi (\$)	ai $\left(\mathrm{ft}_{2}\right)$
1	10	2	.3	1
2	5	4	.1	1
3	15	4	.2	1

Total available storage area $=25 \mathrm{ft}^{2}$. Or
(b) Explain classic EOQ model.
20. (a) Explain $(M / M / 1):(G D / N / \infty)$, Also find λ eff.

Or
(b) Explain multiple serve/model $(M / M / C):(G D / \infty / \infty)$.
(6 Pages)

Code No. : 6320

Reg. No. : \qquad
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

Third Semester
Mathematics - Core
RESEARCH METHODOLOGY
(For those who joined in July 2017 onwards)
Time : Three hours Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answers :

1. Plagiarism means
(a) Copying from others research work
(b) Conclusion
(c) Introduction
(d) A summary of the main problem
2. The for research explains why you decided to embark on your research project.
(a) guide
(b) motivation
(c) problem
(d) talk
3. The role written requirement for the Ph.D degree is a
(a) synopsis
(b) dissertation
(c) thesis
(d) guide
4. List of abbreviations is given
(a) at the end of a research project
(b) at the references base
(c) at the starting of project
(d) none
5. If the mgf of X is $M(t)=(1-2 t)^{-6}$, then the distribution of X is
(a) $\quad N(2,6)$
(b) $\quad N(6,2)$
(c) $X^{2}(2)$
(d) $X^{2}(12)$
6. If $e^{5 t+7 t^{2}}$ is the mgf of a random variable X then the variance of X is
(a) 7
(b) 14
(c) 5
(d) 9
7. If a t distribution has 10 degrees of freedom $P(|T|>2.228)=$
(a) 0.01
(b) 0.03
(c) 0.04
(d) 0.05
8. If \bar{X} is the mean of a random sample and 25 from the distribution $n(3,100)$ then $P(0<\bar{X}<6)=$
(a) 0.786
(b) 0.866
(c) 0.833
(d) 0.723
9. If X, Y are random variables with $\mu_{1}=1, \mu_{2}=4$, $\sigma_{1}^{2}=4, \quad \sigma_{2}^{2}=6, \quad \rho=\frac{1}{2}$ what is the mean of $Z=3 X-2 Y$
(a) 4
(b) -4
(c) -5
(d) 5
10. If X is $b(72,1 / 3)$ then $P(22<X<28)$
(a) 0.5205
(b) 0.6035
(c) 0.8305
(d) 0.1905

PART B - ($5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b)
Each answer should not exceed 250 words.
11. (a) How will you chose your title for your project?

Or
(b) Why is methodology important?
12. (a) Explain the language critiquing.

Or
(b) What do you mean by literature review?
13. (a) Find the mean and variance of chi-square distribution.

Or
(b) Find the mgf of normal distribution.
14. (a) Show that the t distribution with $r=1$ degree of freedom and the Cauchy distribution are the same.

Or
(b) If X_{1}, X_{2} denote a random sample of size two from a distribution that is $n(0,1)$. Find the pdf of $Y=X_{1}^{2}+X_{2}^{2}$.

Page 4 Code No. : 6320
[P.T.O]
15. (a) If $X_{i}(1 \leq i \leq n)$ are stochastically independent random variables with distributions $n\left(\mu_{i}, \sigma_{i}{ }^{2}\right)$ show that $Y=\Sigma k_{i} X_{i}$ where k_{i} are constants, is normally distrusted using mfg technique.

Or
(b) If X_{1}, X_{2} are stochastically independent normal distributions $n\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $n\left(\mu_{2}, \sigma_{2}^{2}\right)$ respectively, find the pdf of $Y=X_{1}-X_{2}$.

PART C $-(5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.
16. (a) Briefly explain the elements of introduction.

Or

(b) Write an essay on selection of topic and choosing your supervisor.
17. (a) How will you format your references?

Or
(b) To sum up the thesis what were various points to be considered before writing the conclusion?

Page $5 \quad$ Code No. : 6320
18. (a) Let X be $n\left(\mu, \sigma^{2}\right)$
(i) If $P(X<89)=0.90$ and $P(X<94)=0.95$ find μ and σ^{2}.
(ii) If $\left(\left|\frac{X-\mu}{\sigma}\right|<b\right)=0.90$ find b.

Or
(b) Find the mean and variance of gamma distribution.
19. (a) Derive the pdf of Fisher's distribution.

Or

(b) If X_{1}, X_{2} are independent chisquare variables with two degrees of freedom, find the pdf of $Y_{1}=\frac{X_{1}-X_{2}}{2}$.
20. (a) Explain, in detail, the mgf techniques, Give illustrations also.

Or
(b) State and prove the central limit theorem.

Reg. No. :

Code No. : 6521

Sub. Code : ZMAM 14
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021

First Semester
Mathematics - Core
OPERATIONS RESEARCH
(For those who joined in July 2021 onwards)
Time : Three hours
Maximum : 75 marks
PART A - ($10 \times 1=10$ marks $)$
Answer ALL questions.
Choose the correct answer.

1. If a transportation model is unbalanced, then \qquad
(a) It cannot be solved
(b) It can't be balanced
(c) We can add a dummy source/destination
(d) None
2. Using North West Corner Method
(a) we can obtain a starting basic solutions
(b) can be used to solve a TP Model completely
(c) is a failure method
(d) is a cumbersome procedure
3. Equipment replacement is an example of a
(a) shortest route model
(b) graphical model
(c) simplex model
(d) an assignment model
4. Which of the following is used to solve acyclic networks
(a) north west corner rule
(b) least cost method
(c) Dijkstra's algorithm
(d) simplex algorithm
5. EOQ is refers to
(a) lead time
(b) order quantity
(c) price break
(d) static model
6. CPM is used to find
(a) optimum dination of the project
(b) critical activities
(c) project evaluation
(d) review techniques
7. The extra inventory maintained in addition to the required inventory corresponding to normal consumption rates is called
(a) abundant stock
(b) stock for discount
(c) buffer stock
(d) surplus stock

Page $2 \quad$ Code No. : 6521
8. Time horizon
(a) is always one year
(b) five years
(c) period over which the inventory will be controlled
(d) period during which inventory become zero
9. When service facility includes more than one server and all servers offer the same service, the facility is said to have.
(a) random series
(b) parallel series
(c) servers in series
(d) FCFS
10. Jockey renege are linked with
(a) Queuesize
(b) calling source
(c) human behavior in Queues
(d) none

PART B- $(5 \times 5=25$ marks $)$
Answer ALL questions, choosing either (a) or (b).
11. (a) Explain transportation algorithm with an example.

> Or
(b) Describe an assignment model
12. (a) Explain critical path method

Or
(b) Define optimistic time, most likely time and pessimistic time.
13. (a) Find the critical activities of the project

Or
(b) Explain PERT in detail
14. (a) With usual notations, consider the inventory model with $\mathrm{K}=$ Rs. $10, \mathrm{~h}=$ Rs. $1, \beta=5$ units, $c_{1}=2, c_{2}=2, q=15$ units. Find the associated total cost per unit time.

Or
(b) Let $\mathrm{K}=\$ 100, \mathrm{D}=1000$ units, $\mathrm{p}=\$ 10$, $\mathrm{h}=\$ 2$ and assume that the demand during the lead time follows a uniform distribution over the range 0 to 100 . Find the optimum reorder level.

Page $4 \quad$ Code No. : 6521
[P.T.O]
15. (a) Explain the roles of the Poisson and exponential distributions in Queueing Theory

Or

(b) Describe the various service disciplines in Queueing theory

PART C - ($5 \times 8=40$ marks $)$
Answer ALL questions, choosing either (a) or (b).
16. (a) Solve the Assignment model.

Job

Worker	1			
	1	2	3	4
	1	4	6	3
	2	7	10	9
	3	4	5	11
7				
	4	8	7	8

Or
(b) Find a starting solutions to the Transportation model by any two methods.

Supply

Demand | | Su | | |
| :---: | :---: | :---: | :---: |
| 10 | 4 | 2 | 8 |
| 2 | 3 | 4 | 5 |
| 1 | 2 | 0 | 6 |
| 7 | 6 | 6 | |

Page $5 \quad$ Code No. : 6521
17. (a) For the following network find the shortest routes between every two nodes. Arc $(3,5)$ is directional. The distances are given in Kms

Or
(b) How will you formulate a shortest route problem as linear programing problem?
18. (a) Explain Cutting plain algorithm.

Or
(b) Explain Vogel's approximation method
19. (a) For the single period model with instantaneous demand and no setup cost obtain single critical number policy.

Or
(b) Find the economic order quantity formula for a single item static inventory model with instantaneous supply and shortages allowed and uniform demand.

Page 6 Code No. : 6521
20. (a) Explain pure birth model.

Or
(b) Cars arrive at a toll gate according to Poisson distribution with mean 90 per hour Average time for passing through the gate is 38 seconds. Drivers complain of the long waiting time. Authorities are willing to decrease through passing time through the gate to 30 seconds by introducing new automatic devices. This can be justified only if under the old system the number of waiting can exceeds 5 . In addition to percentage of the gate's idle time under the new system should not exceeds 10% can the new device be justified?

[^0]: Or
 (ஆ) ஒரு தொடுத்த வரைபு G-யில் கீழே உள்ளவை ஒன்றுக்கொன்று சமமானமானவை என நிரூபி :
 (i) G ஒரு ஆயிலோியன் வரைபு.
 (ii) G-ன் ஒவ்வொரு புள்ளியும் இரட்டைப்படை படியுடையது.
 (iii) G-ன் கோடுகளின் கணம் சுற்றுகளாக பிரிக்கப்படக்கூடியது.

