

MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI – 12

MODIFIED AND CORRECTED SYLLABUS (RECEIVED FROM CHAIRPERSON ON 13.10.2023.)

M.Sc NANO SCIENCE AND NANO TECHNOLOGY

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

FROM THE ACADEMIC YEAR 2023 – 2024

The preamble of the syllabus

Nanoscience is the study of systems in nanoscale and nanotechnology is the ability to systematically organize and manipulate properties and behavior of matter in the atomic and molecular levels. Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. These newborn scientific disciplines are situated at the interface between physics, chemistry, materials science, microelectronics, biochemistry, and biotechnology and engineering. Through nanoscience and nanotechnology it has become possible to study and create very useful functional devices, materials and systems on the 1 to 100 nanometer (one billionth of a meter) length scale. The reasons why nanoscale has become so important are presented. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronics and biological systems, nanodevices, nanorobotics, nanocomputers, nanopowders, nanostructured catalysts and nanoporous materials, molecular manufacturing, nanolayers, molecular nanotechnology, medicine such as Alzheimer's and cancer prediction, prevention and treatment through nanotechnology, nanobiology, organic nanostructures to name a few.

Master of Science (M.Sc.) in Nanoscience and Nanotechnology, the curricula, and course content were designed to meet the standards of UGC-CSIR (NET) and (SLET) examinations. The choice- based credit system of learning develops a strong base in the core subject and specializes in the disciplines of his / her liking and abilities and develops an in-depth understanding of various aspects of Biotechnology. The students develop experimental skills, design, and implementation of novel synthetic methods, and develop the aptitude for academic and professional skills, by acquiring basic concepts for structural elucidation with hyphenated techniques, and understanding the fundamental biological process and rationale of the computer. The project introduced in the curriculum will motivate the students to pursue research and entrepreneurial skill development.

Programme	MEWORK FOR POSTGRADUATE EDUCATION M.Sc., Nano Science & Nanotechnology
riogramme	WI.Sc., Nano Science & Nanotechnology
Programme Code	
Duration	2 years for PG
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Globa context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizationa
	goals.
	PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.			
Programme	PSO1 – Placement			
Specific Outcomes (PSOs)	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.			
	PSO 2 - Entrepreneur			
	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.			
	PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.			
	PSO4 – Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world.			
	PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.			

Template for P.G., Programmes

Semester-I	Credit	Hours	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credi t	Hours
1.1. Core-I	5	7	2.1. Core-IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	5	7	2.2 Core-V	5	6	3.2 Core-VII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective - VI (Industry / Entrepreneurship) 20% Theory 80% Practical	3	4
1.5 Generic Elective-II:	3	5	2.5 Generic Elective -IV:	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
			2.6 NME I	2	4	3.6 NME II	2	3	4.6 Extension Activity	1	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30
					Total C	redit Points -91					

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

First Year – Semester – I					
Part	List of Courses	Credits	No. of		
			Hours		
	Core – I	5	7		
	Core – II	5	7		
	Core – III	4	6		
	Elective – I	3	5		
	Elective – II	3	5		
		20	30		

	Semester-II					
Part	List of Courses	Credits	No. of Hours			
	Core – IV	5	6			
	Core – V	5	6			
	Core – VI	4	6			
	Elective – III	3	4			
	Elective – IV	3	4			
	Skill Enhancement Course [SEC] – I	2	4			
		22	30			

Second Year – Semester – III

Part	List of Courses	Credits	No. of
			Hours
	Core – VII	5	6
	Core – VIII	5	6
	Core – IX	5	6
	Core (Industry Module) – X	4	6
	Elective – V	3	3
	Skill Enhancement Course – II	2	3
	Internship / Industrial Activity [Credits]	2	_
		26	30

	Semester-IV				
Part	List of Courses	Credits	No. of Hours		
	Core – XI	5	6		
	Core – XII	5	6		
	Project with VIVA VOCE	7	10		
	Elective – VI (Industry Entrepreneurship)	3	4		
	Skill Enhancement Course – III / Professional Competency Skill	2	4		
	Extension Activity	1	_		
		23	30		

Total 91 Credits for PG Courses

M.Sc., Nano science and Nano Technology

SEMESTER - I

Course status	Course Title	Credits	Hours
Core-1	Introductory Physics	4	7
Core -2	Introductory Chemistry	4	7
Core-3	Introductory Biology	4	6
Elective - I	Introduction to Material Science	3	3
Elective - II	A. Laboratory Safety and HealthB. Intellectual Property Rights.	2	3
	C. Innovation and Entrepreneurship		
	Nanoscience Practical-I	4	4
	Total	21	30

Course status	tatus Course Title		Hours
Core 4	Introduction to Nanoscience and Nanotechnology	4	5
Core 5	Preparation of Nanomaterials	4	6
Core 6	Characterization Techniques of Nanomaterials –I	4	6
Elective 3	Introduction to Nanotoxicology,	3	3
Elective 4	Nanobiotechnology	2	3
	Nanoscience Practical – II	4	4
	Skill Enhancement Course [SEC] - I NME	2	3
	Total	23	30

SEMESTER - II

SEMESTER - III

Course status	Course status Course Title			
Core 7	Nanoelectronics and Nano sensors	4	5	
Core 8	Properties of Nanomaterials	4	5	
Core 9	Characterization Techniques of Nanomaterials-II	4	5	
Core 10	Advanced Nanomaterials for Nanotechnology	4	5	
Elective 5	Biomaterials and Nanobiotechnology for Tissue Engineering	2	3	
	Nanoscience Practical – III	4	4	
	Skill Enhancement Course - II	2	3	
	Internship / Industrial Activity	2	-	
	Total	26	30	

SEMESTER - IV

Course status	Course status Course Title		Hours
Core 11	Biomedical Nanotechnology	4	6
Core 12	Industrial Nanotechnology	4	6
	Project Work with Viva voce	8	10
Elective 6	Nanotechnology for Food and Agriculture	2	4
	Skill Enhancement Course – III / Professional Competency Skill	2	4
	Extension Activity	1	-
	Total	21	30

Total Credits - 91; Total hours - 120 h

SEMESTER I CORE I

Course Code	Course Name:	INTRODUCTORY	Credits 4		
	PHYSICS				
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)		
per week	Hours:	week	Hours per week		
	(T) per week		-		
Course Category:	Year &	Admission Year:			
Core I	Semester:				
Pre requisite:	Basic knowledg	ge with concepts of			
	physics.				
Links to other courses					
Learning Objectives:	The main objectives of this course are to: To understand fundamental concepts of electromagnetic waves, current, magnetism, electronics and quantum mechanics. To gain knowledge on electronic devices such as diodes and transistors also quantummechanics				

To understand fundamental concepts of physics which are necessary for nanoscience and technology subject
To apply the gained subject knowledge to understand the nano-enabled devices in second and third semesters
To evaluate microscopic scales with macroscopic Impact with the help of Physics.
To understanding on real time applications of physics
To analyze the acquired knowledge and understanding on real time applications of physics
2 Tutorial hours
-

Unit:1	18 hours
Unit:2	18 hours
Unit:3	18 hours
Unit:4	18 hours
Unit V	18 hours

Unit:1	Unit:1 WAVES AND OPTICS					
Electromagneti	c waves and their characteristics - Theories of light - Wav	ve, Electromagnetic				
and Quantum -	- Scattering of light: Rayleigh's and Tyndal scattering – Hu	ıygen's principle –				
Interference – I	Diffraction – Polarization of light waves					

Unit:2 ELECTRIC CURRENT	18 hours
Electric Current - Flow of Charges in Metals - Drift Velocity, N	Aobility and Their Relation –
Ohm's Law: Electrical Resistance - I-V Characteristics - Re	sistivity and Conductivity -
Superconductivity – Joule's Heating Effect – Thermoelectric Eff	fects: Seebeck and Peltier
Effect.	

Unit:	3	MAGNETISM	18 hours
Funda	amental (Concepts of Magnetism- Bohr Magneton- Magnetic Dipo	les- Field- Electron
		netic Moment- Magnetic moment due to Nuclear Spin-	
		Magnetization- Intensity of Magnetization – Magnetic Mater	
	•		
Unit:	4	ELECTRONICS	18 hours
Classi	ification	of Solids, Energy Levels, Intrinsic and Extrinsic Semicondu	uctor, Conduction
In Me	tals and	Semiconductors. Diode Under Forward and Reverse Bias -	Transistor Basics,
Work	ing Princ	iples – Current-Voltage Characteristics	
Unit:		QUANTUM MECHANICS	18 hours
		avelength: in terms of energy and potential - Schrödin	
		ne independent equation – Applications of Schrödinger w	
		rmonic oscillator: Eigen values of the total energy - Partic	le in a one
dimer	nsional bo	DX.	
Unit:		CONTEMPORARY ISSUES	2 hours
Exper	t lectures	, online seminars – webinars	
		TOTAL LECTURE HOURS	90 hours
Text]	Book(s)		
1		ate Physics, S.O. Pillai, 4 th Ed, New Age International Publi	shers (2001).
2	Introduc	ction To Solid-State Physics, C. Kittel, Wiley (1986).	
3	Magneti	sm: Principles and Applications, D. Craik, Wiley (1995).	
4	A Textb	ook of Quantum Mechanics, P. M. Mathews and K. Venkat	esan, Tata
	McGrav	v-Hill, (1978)	
5		n Mechanics: Theory and Applications, Ajoy Ghatak, and S	. Lokanathan,
	Springer	r (2004)	
Refer	rence Boo	bk(s)	
1.	Text Bo	ok Of Electronics, S. Chattopadhyay, New Central Book Ag	gency pvt. Ltd.,
	(2006).		
2.	Magneti	c Materials : Fundamentals And Applications by Nicola A.	Spaldin,
	Cambrie	lge University Press, 2nd Edition, (2018)	
Relat	ed Onlin	e Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	NPTEL	Electromagnetism	
	https://n	ptel.ac.in/courses/115/106/115106122/	
2		Magnetic Properties	
		www.youtube.com/watch?v=QQZ6EGf0Ju8	
3		Quantum Mechanics	
		ptel.ac.in/courses/115/101/115101107/	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of)	3	2	3	3	3
Course Contribution to Pos					

SEMESTER I

	COI	RE-II					
Course Code	Course Name: CHEMISTRY	INTRODUCTORY	Credits: 4				
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week				
Course Category:	Year & Semester:	Admission Year:					
Pre requisite:	Basic knowledg Chemistry	Basic knowledge with concepts of Chemistry					
Links to other courses							
Learning Objectives:	The main objectives of this course are to: To understand fundamental concepts of electromagnetic wav current, magnetism, electronics and quantum mechanics. To gain knowledge on electronic devices such as diodes and transisto also quantummechanics						

Unit V	18 hours					
Unit:4 18 hours						
Unit:3	18 hours					
Unit:2 18 hours						
Unit:1	18 hours					
Contents a	nd Required hours: (Total =90 hours)					
Recap:	2 Tutorial hours					
	applications.					
CLO5 5. Evaluation and assessment of the theories and chemical process for						
	inorganic properties and physical concepts					
CLO4	4. Differentiate different properties and mechanisms of organic reactions,					
	derivations.					
CLO3 3. Interpretation and application of the theories to chemical process						
CLO2	2. Understand and describe chemical concepts and processes					
CLO1	1. Define and identify differential branches of chemistry and theirimportance					
CT O1						

Units									
Ι	I Chemical Equilibria - Activity Concept, Equilibrium Constant and								
	Applications, Ionisation Constants of Acids and Bases. Concept Of pH,								
	Hydrolysis of Salts.								
II	Buffers – Types, Range and Capacity, Dissociation of Polyprotic Acids,								
	Common Ion Effect, Salt Effect. Electrochemistry - Conductivity of								
	Electrolytes, Electrochemical Cells, Standard Electrode Potentials								

III	Symmetry And Group Theory, Bonding Models in Chemistry - Ionic								
	Bond, Covalent Bond, Coordination Chemistry - Theories of Bonding in								
	Coordination Compounds and Electronic Spectra of Coordination								
	Compounds								
IV	Thermodynamics: First, Second and Third Law of Thermodynamics.								
	Gibbs And Helmholtz Energy and Chemical Equilibrium. Chemical								
	Kinetics, Transition State Theory and Collision Theory,								
	Heterogeneous Catalysis.								
V	Organic Compounds – Structure and Bonding, Aliphatic and Aromatic								
	Compounds, Functional Groups, Nucleophiles and Electrophiles,								
	Reactions and Mechanisms								
Reading List(Print	1. Fundamentals Of Analytical Chemistry - Skoog, West and Holler,								
and Online)	Saunders College, Publishing, VII Ed, (1996).								
	2. Text Book Of Quantitative Inorganic Analysis – A.I. Vogel, Elbs,								
	IVEd., (1985).								
	3. Physical Chemistry, A. Alberty And R.J. Silbey								
Recommended	1. Inorganic Chemistry: Principles of Structure and Reactivity – J.E.								
Texts	Huheey, E.A. Keiter and R.L. Keiter, IVEd.								
	2. Physical Chemistry, Atkins								
	3. Text Book Of Quantitative Chemical Analysis – A.I. Vogel, VI								
	Ed, Pearson Education Ltd, 2001								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low - 1

SEMESTER I CORE-III

Course Code	Course Name: IN BIOLOGY	TRODUCTORY	Credits: 4				
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week				
Course Category:	Year & Semester:	Admission Year:					
Pre requisite:	Basic knowledge v Biology	with concepts of					
Links to other courses							
Learning Objectives:	1. Acquire the kn 2. Explaining the 3. Understanding different types of r 4. Gaining the kn	owledge about of glucose, an d comparison of the different	oolism, and bioenergetics. ructure, of DNA, RNAand d fatty acid metabolism.				
		Units					
I	Definitions, Ty	<u>CELL STRUCTURE AND FUNCTIONS</u> Definitions, Types, Eukaryotic and Prokaryotic cells, Principle o embrane organization, Cytoskeletal proteins, Types of cell division litosis and Meiosis.					
II		d functions of proteins, Amino acids and peptides, Proteins dary, Tertiary, and Quaternary structures, Protein folding I myoglobin.					

III	ENZYMES							
	Mechanism of actions, Enzyme kinetics, Regulation of activities,							
	ioenergetics, Role of ATP, Biological oxidation, Respiratory chain and							
	oxidative phosphorylation							
IV	METABOLISOM							
	Overview of metabolism and catabolism, Carbohydrates, Biological							
	significance, Glycolysis, Lipids of physiological significance, Cholesterol,							
	Synthesis, Transport and Excretion, Glycoproteins and Extracellular							
	matrix, Biooxidation, Fatty acid synthesis, Phospholipids and Membranes							
V	NUCLEIC ACIDS							
	Structure, functions and replications of information macromolecules.							
	Metabolism of purines and pyrimidine nucleotides. Organization,							
	replication and repair of DNA. RNA and protein synthesis.							
Reading List(Print								
and Online)								
mmendedTexts	1. Lehninger, Principles of Biochemistry, Cox and Nelson, V							
	Edn,2008							
	2. L. Stryer, Biochemistry, 4 th Edn., 1995							
	3. Haper's Illustrated Biochemistry, R.K, Murray, D.K. Granner and							
	V.W.Rodwell, McGraw Hill, New Delhi, 2003.							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
C03	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER I Elective Course-1

		Introductions To Materials	Credits 3
Lecture Hours: (L) per week	Science Tutorial Hours:	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week
Course Category:	(T) per week Year & Semester:	Admission Year:	
Pre requisite:	Basic knowledge solid state physic	e with concepts of cs	
Links to other course	es		
Learning Objectives	: The main objec	tives of this course are to:	
	To gain knowled	erstand fundamental concepts of ge on various properties such as anical properties of materials	•
Expected Course Outc	omes:		
On the successful comp	letion of the course,	student will be able to:	
1 To understand t	he fundamental conc	cepts of material science	
2 To apply the gai second and third		dge to understand the advanced c	concepts of nanoscience in
3 To evaluate imp materials.	act of presence of in	npurity and applied temperature	on various properties of
4 To analyze the a functional mater		and understanding on real time a	pplications of various
Unit:1	CRYSTAL STR	UCTURE AND DEFECTS	18 hours
Structures, Crystallogra	phic Planes, Miller	e, Crystals, Polycrystals, Symm Indices, Chemical Bonding, At nd Vander Waals; Crystal Defec	omic Bonding in Solids,
Unit:2	ELECTRI	CAL PROPERTIES	18 hours
Determination – Elec	ctrical Conductivity	t of Effective Mass of Electro y – Activation Energy – d Impurity on Fermi Level – Hall	Carrier Concentration In
Unit:3	MAGNE	FIC PROPERTIES	18 hours
	ia, Para, Ferro, Anti-	-Ferro and Ferri Magnetism – M ysteresis – Remanence – Coerciv	agnetic Susceptibility –

Unit	:4	DIELECTRIC PROPERTIES	18 hours				
Diele	ectric Mater	ials: Electronic, Ionic, Orientational, and Space Charge Polarizatio	on – Complex				
Diele	ectric Const	ant RC Equivalent Network - Dielectric Loss - Different Types of	f Dielectric				
Brea	kdown, Cla	ssification of Insulating Materials.					
Unit	Unit:5 THERMAL, OPTICAL & MECHANICAL PROPERTIES						
Ther	mal· Heat (Capacity – Thermal Expansion – Thermal Conductivity and Stresse	es – OnticalProperties				
		Non-Metals. Application of Optical Phenomena – Mechanical Pro-					
		ation – Interpretation of Stress-Strain Curves, Compressive Stre	*				
		well, Brinell and Vickers.	6				
Unit	:6	CONTEMPORARY ISSUES	2 hours				
Expe	rt lectures,	online seminars – webinars					
-							
		TOTAL LECTURE HOURS	90 hours				
Text	Book(s)						
1		to Diversion C.O. Dillo: 1th Ed. New Ann Internetional Dublisham (2001)				
1 2		tte Physics, S.O. Pillai, 4 th Ed, New Age International Publishers (2 tion To Solid-State Physics, C. Kittel, Wiley (1986).	2001).				
2 3	Introduc	101 10 Solid-State Flysics, C. Kittel, wiley (1980).					
5	Magnetis	sm: Principles and Applications, D. Craik, Wiley (1995).					
4	·	ce Spectroscopy: Theory, Experiment, and Applications, 3rd Editions ov and Dr. J. Ross Macdonald, Wiley (2018).	on, Dr. Evgenij				
Refe	rence Bool	<u>x(s)</u>					
1.	Solid-Sta (2018).	ate Physics: Introduction to the Theory, Patterson, James, Bailey, F	Bernard C.Springer				
2.	Magnetic	c Materials : Fundamentals And Applications by Nicola A. Spaldin	n, Cambridge				
	Universi	ty Press, 2nd Edition, (2018)					
Rela	ted Online	Contents [MOOC, SWAYAM, NPTEL, Websites etc.]					
1	NPTEL:	Material Science					
	https://nj	otel.ac.in/courses/112/108/112108150/					
2		Magnetic Properties					
	https://w	ww.youtube.com/watch?v=QQZ6EGf0Ju8					
	I						
1							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
C05	3	3	3	3	2
Weightage	15	15	15	15	10
Weighted percentage (rounded of) Course Contribution to Pos	3	3	3	3	2

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
		LABORATORY SAFETY AND HEALTH	Value Added Course – A	2

Course Outcomes	1. Understanding the basic of Nanoscience and differentiate betweennano
	and bulk materials
	2. Evaluate and critically review the theoretical and practical aspects of
	nanomerials preparation and application.
	3. Understanding the concepts and techniques in nanotechnology
	4. Critically assess and outline the nanotechnology for all areas of
	application
	5. Demonstrate the new properties of nanomaterials for next generation
	needs
Course I	
Course I	Core/Elective/Soft Skill
Title of the	LABORATORY SAFETY AND HEALTH
Course:	
Course Objectives	1. Define and identify laboratory safety and health
	2. Understand and describe various safety issues and protocols
	3. Interpretation and application of safety protocols and laboratory rules.
	4. Differentiate different types of laboratory accidents and safetyprotocols
	and personal protective equipments.
	5. Evaluation and assessment safety regulations, personal protective
	equipments and First aid practices.
	6. Apply the safety practices in real-time and awareness to the societal
	needs.
	Units
Ι	SAFETY REGULATIONS
	Standard Laboratory Procedures, Rules and Regulations. Lab Safety
	Practices.
II	SAFETY REGULATIONS
	Employee Information, Safety Plans and Arrangement of Laboratories.
III	CHEMICAL AND BIOSAFETY
	Chemicals Handing, MSDS Information, Labelling of The Chemicals,
	Disposal Of The Chemical And Biological Wastes
IV	SAFETY EQUIPMENTS
L V	Various Safety Equipments, Personal Protective Equipments, User
V	Manuals, Arrangements, Training.
V	FIRST AID
	First Aid Practices - Cardiac, Chemical Injury, Physical Injury. Emergency
	Calls and Procedures. First Aid Kits.
	1. Introduction To Health And Safety At Work, Elsevier (2015)
and Online)	
Recommended	1. Environmental Health & Safety Procedure Manual, Harper College
Texts	(2001)
h	

es			

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
\$CO4	3	2	3	3	3
-CO5	3	2	3	3	3
⁰ Weightage n	15	10	15	15	15
gWeighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
		Intellectual Property Rights	Value Added Course – B	2

Course Outcomes	Understanding research ethics
(Use verbs like	Learn to protect our research finding
interpret, calculate,	Learn to file Patents
employ, generalise,	Critically assess and outline the findings and Know How
evaluate,	
differentiate,	
critically assess,	
review, enumerate,	
identify, state,	
describe, explain,	
outline, select, recall,	
understand, compare	
and contrast,	
evaluate, critique,	
revise, summarise,	
demonstrate, draft,	
report, explain,	
obtain, recognise,	
respond, display)	
Course I	Value Added Course – B
Title of theCourse:	Intellectual Property Rights
Title of theCourse:	Intellectual Property Rights 1. Define Intellectual Property Rights
	1. Define Intellectual Property Rights
	 Define Intellectual Property Rights Understand and describe various types of IP rights
	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets
	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS
	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets
	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets Evaluate and assessment of all regulations for the above said IPS. Units Introduction: – Invention and Creativity – Intellectual Property (IP) –
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets Evaluate and assessment of all regulations for the above said IPS.
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets Evaluate and assessment of all regulations for the above said IPS. Units Introduction: – Invention and Creativity – Intellectual Property (IP) – Importance- Protection of IPR
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets Evaluate and assessment of all regulations for the above said IPS. Introduction: – Invention and Creativity – Intellectual Property (IP) – Importance- Protection of IPR Patents: IP- Patents- Copy rights and related rights- Trademarks and right arising from Trademark registration- definitions- Applications Procedures International Convention relating to Intellectual Property- establishment of
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets Evaluate and assessment of all regulations for the above said IPS. Introduction: – Invention and Creativity – Intellectual Property (IP) – Importance- Protection of IPR Patents: IP- Patents- Copy rights and related rights- Trademarks and right arising from Trademark registration- definitions- Applications Procedures International Convention relating to Intellectual Property- establishment of WIPO- Mission and Activities- History –General Agreement on Trade and
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS Differentiate different types of filing IPS To learn Know How and Trade Secrets Evaluate and assessment of all regulations for the above said IPS. Introduction: – Invention and Creativity – Intellectual Property (IP) – Importance- Protection of IPR Patents: IP- Patents- Copy rights and related rights- Trademarks and right arising from Trademark registration- definitions- Applications Procedures International Convention relating to Intellectual Property- establishment of WIPO- Mission and Activities- History –General Agreement on Trade and Tariff (GATT)
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS
Course Objectives	 Define Intellectual Property Rights Understand and describe various types of IP rights To learn different types of IPS

0	ubbaram N.R "Handbook of Indian Patent Law and Practice, S. Viswanathan, (Printer and Publishers), Pvt. Ltd. 1998
mmendedTexts	Intellectual Property Today: Volume 8 May 2001, [www. Iptoday. Com]

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
C03	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

		INNOVATION AND ENTREPRENEURSHIP	Value Cours	-		2	
CourseCode:		INNOVATION AND ENTREPRENEURSHIP		L	T	P	C
Core/Elective/	Supportive	Value Added Course – C					
Pre-requisite		Basic knowledge with data sets, graphs and scientific images.					
The main object	ctives of this c	ourse are to:					
foster 2. To un	ing Innovation derstand the co	nts to learn the various aspects of in oncept and theories of entrepreneurs alities of entrepreneurs that contribu	ship				of
Expected Cou	rse Outcomes	:					
On the success	*			-			
	anagement/Ris	sk Management - you must take adv id	vance fro	m			
matters	much in the m		product				
		ds of the customer					
	a can be innoving strategies	ative if its in accordance to people's	need.				
Unit:1	Introduction	n to Innovation		-	18 hou	rs	
		novation-Types of Innovation-Rel ations and opportunities	evance of	of	Techr	nology	/ for
Unit:2	Promoting a	nd managing innovation			18 hou	rs	
	d renewing in	ents, Trademarks, Intellectual Pro- novation-Enhancing Innovation P			0		0
Unit:3		Strategy for Commercializing I	nnovatio)n	18 ho	urs	
Innovation Pro	ng up the Inve	nd barriers for introducing produc stment and establishing organisation	ts and s	erv	vices-S	Select	
Unit:4		Entrepreneurship		-	<mark>18 ho</mark>	urc	
Entrepreneursh social entrepr	eneurship – ip-Characteris	ontext – social and economic developmentation of an entrepreneurial attribution of an entrepreneurial venture,	tes / in	Er di	trepre	eneurs	

Unit:5 ENTREPRENEURSHIP DEVELOPMENT IN INDIA 18 hours

Growth and promotion of Entrepreneurship in India - Institutional arrangements Entrepreneurial motivation - Values and Culture - Entrepreneurship in various sectors Access to finance, market, R&D and Technologym- Policies and programmes related to entrepreneurship development

Unit:6 CONTEMPORARY ISSUES

Expert lectures, online seminars – webinars

TOTAL LECTURE HOURS

<mark>90 hours</mark>

2 hours

Text Book(s)

- 1. Robin Lowe and Sue Marriott, Enterprise: Entrepreneurship and Innovation Concepts, Contexts and Commercialization
- 2. John Bessant and Joe Tidd, Innovation and Entrepreneurship

Reference Book(s)

- 1. Rabindra N. Kanungo "Entrepreneurship and innovation", Sage Publications, New Delhi, 1998.
- 2. Peter F. Drucker, Innovation and Entrepreneurship
- 3. EDII "Faculty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development" Institute of India, Ahmadabad, 1986.
- 4. Philips, Bonefiel and Sharma (2011), Social Entrepreneurship, Global vision publishing house, New Delhi.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

SEMESTER I Nanoscience Practical I

Course Code	Course Name:	Nanoscience Practical- I	Credits 4
Lecture Hours : (L) per week	Tutorial Hours : (T) per week	Lab practice Hours : (P) per week	Total: (L+T+P) Hours per week
Course Category:	Year & Semester :	Admission Year:	
Pre requisite:		ge with concepts of istry and Physics	
Links to other courses			
Learning Objectives:	 Acquire pramethods in Bion Apply the presentation technics Provides op and cells. Master the and charactering 	tives of this course are to: actical skills in the use of inst molecules like glucose, urea, practical knowledge in unders niques. portunities to collect and exa technical skills in buffer, med g biological samples. e the structural diversity of he	creatinine, DNA, proteins, tanding the estimation, umine samples fromblood lium, sterilizing,culturing,

	Units
Ι	PROTEIN ESTIMATION
	Lowry and Bradford methods
II	ESTIMATIONS OF BLOOD- Glucose, Blood urea, Uric acid, andCreatinine
III	SEPARATION AND CHARACTERIZATION OF PROTEIN
	Chromatography, Gel Filtration, Ion exchange, Affinity chromatography, TLC,
	Polyacrylamide, Agarose gel electrophoresis.
IV	DNA ESTIMATION
	Isolation of DNA and demonstration of apoptosis of DNA laddering
V	MICROSCOPY – FLUORESCENCE MICROSCOPE EXPERIMENTS
	Cell Counting, MTT assay for cell viability, and growth.

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

SEMESTER-II CORE-IV

Course Code	Course Name: and Nanotechno	Introduction to Nanoscience logy	Credits: 4		
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week		
Course Category:	Year & Semester:	Admission Year:			
Pre requisite:	Basic knowledge Nanoscience and	with concepts of Nanotechnology			
Links to other courses					
Learning Objectives:	The main objectives of this course are to: To understand fundamental concepts of nanoscience and technology To gain knowledge on size dependent various physical properties				

Exp	Expected Course Outcomes:							
On	the successfu	l completion of the course, student will be able to:						
1	To understand the fundamental concepts of nanoscience							
2		he basic concepts of physics, chemistry and biology concepts to I the advanced concepts of nanoscience						
3	To influen materials.	ce of size and morphology and other factors on various properties	s of					
4	•	e the acquired knowledge and understanding on real time applicat applications	ions					
Uni	t:1	FUNDAMENTALS	18 hours					
Bac	kground to	nanoscience - Historical perspectives and Scientific revolutions	s – Definitions and					
Clas	ssifications b	ased on dimension: Zero, One, Two and Three - Clusters, Quantur	n dots, Nanowires,					
Rod	Rods and tubes, and thin films; Hard sphere model: Grain and Grain boundary concepts;							
Uni	Jnit:2 BASIC CONCEPTS 18 hours							
-	Top-Down and Bottom-Up Approaches: Physical - Chemical and Mechanical Routes; Influence of various parameters on morphology of crystallites - Nanocomposites: Metal and Metal Oxides; Metal							

~1	de - Metal Oxide; Nano in Natur	re: Gecko Effect, Lotus leaf effect, Superhydroj	phobicity, Self-
Clea	ning and Antifogging – Colored	Glasses and Dichroism.	
Unit	t:3 U	INIQUE PROPERTIES	18 hours
Quar	ntum Confinement Effects: Influ	ence of grain size and morphology – Physical	properties with
Uniq	queness compared to bulk and m	icroscopic solids: Optical – Surface Plasmon Re	esonance, Band
Gap	Widening, Magnetic – Superpara	amagnetism, Thermal – Melting point depression	l.
Unit	t:4 ADVANCED N	NANOSTRUCTURED MATERIALS	18 hours
Allot	tropes of carbon: Graphene, CNT	Г, C-dots, Fullerenes – Inorganic: Organic hybrid	s – Ferrofluids-
Zeol	lites- Core-shells – Nanostructure	es of Zinc Oxide: tetrapods, rings, springs, belt, re	ods, wires -
Addi	itive Manufacturing of 3D Nanoa	architected Metals – Nanorobots	
Unit	r:5	ROAD MAP	18 hours
– bat		ation – MEMS and NEMS – Current and future c	hallenges 90 hours
Text			90 IIOUI S
Text	t Book(s)		
1	t Book(s) Solid State Physics, S.O. Pilla	i, 4th Ed, New Age International Publishers (200	
1 2	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986).	
1	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap	i, 4th Ed, New Age International Publishers (200	01).
1 2 3 4	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995).	01).
1 2 3 4 Refe	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995).	2006)
1 2 3 4 Refe 1.	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under McGraw Hill (2017)	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995). echnology, Edited by Bharat Bhushan, Springer (2 rstanding Nanoscience and Nanotechnology, T. F	01). 2006) Pradeep,
1 2 3 4	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under McGraw Hill (2017)	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995). echnology, Edited by Bharat Bhushan, Springer (2 rstanding Nanoscience and Nanotechnology, T. F	01). 2006) Pradeep,
1 2 3 4 Refe 1. 2.	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under McGraw Hill (2017) Magnetic Materials: Fundame University Press, 2nd Edition,	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995). echnology, Edited by Bharat Bhushan, Springer (2 rstanding Nanoscience and Nanotechnology, T. F	01). 2006) Pradeep,
1 2 3 4 Refe 1. 2.	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under McGraw Hill (2017) Magnetic Materials: Fundame University Press, 2nd Edition,	i, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995). echnology, Edited by Bharat Bhushan, Springer (2 rstanding Nanoscience and Nanotechnology, T. F entals and Applications by Nicola A. Spaldin, Car (2018) WAYAM, NPTEL, Websites etc.]	01). 2006) Pradeep,
1 2 3 4 Refe 1. 2. Rela	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under McGraw Hill (2017) Magnetic Materials: Fundame University Press, 2nd Edition,	ii, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995). echnology, Edited by Bharat Bhushan, Springer (2 rstanding Nanoscience and Nanotechnology, T. F entals and Applications by Nicola A. Spaldin, Car (2018) WAYAM, NPTEL, Websites etc.]	01). 2006) Pradeep,
1 2 3 4 Refe 1. 2. Rela	t Book(s) Solid State Physics, S.O. Pilla Introduction To Solid-State Pl Magnetism: Principles and Ap Springer Handbook of Nanote erence Book(s) NANO: The Essentials: Under McGraw Hill (2017) Magnetic Materials: Fundame University Press, 2nd Edition, atted Online Contents [MOOC, SW NPTEL: Introduction to Nano	ii, 4th Ed, New Age International Publishers (200 hysics, C. Kittel, Wiley (1986). oplications, D. Craik, Wiley (1995). echnology, Edited by Bharat Bhushan, Springer (2 rstanding Nanoscience and Nanotechnology, T. H entals and Applications by Nicola A. Spaldin, Car (2018) WAYAM, NPTEL, Websites etc.] materials	01). 2006) Pradeep,

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

SEMESTER-II

CORE-V

Course Code:		Preparation of Nanomaterials	L	T	P	C
Core/Elective	/Supportive	Core	4	0	0	4
Pre-requisite	11	Basic knowledge with wet chemistry				
		and materials				
Course Objec	tives:					
ş	ctives of this co	ourse are to:				
-		paration procedures also the various factors	that affe	ects the s	size and	
	rphology of cry					
2. To	gain knowledg	e on current status, future trends and scope	for resea	rch.		
	rse Outcomes					
On the success	ful completion	of the course, student will be able to:				
1 To under	rstand fundame	ental concepts in materials preparation with	various			
Morphol	ogies					
2 To apply	the gained sub	ject knowledge towards understanding the	mechani	sms		
	-	nical and mechanical routes.				
3 To evalu	ate and unders	tand the role of preparation method towards	s grain w	ith		
narrow d	listribution and	desired morphology.	C			
4 To analy	ze acquired kn	owledge and understanding on effect of gra	un			
morphol	ogy and its nee	ds for technological advancements				
Unit:1	BAS	SICS IN MATERIALS PREPARATION	[18 hou	rs	
Grain Growth-	Grain boundar	e and Amorphous solids – Alloys – compo y volume ratio –Temperature effects – Gra nsional Classifications.				
Unit:2		PHYSICAL ROUTES		18 hou	rs	
	all mill - Inert s	gas condensation Role of inert gases - Post of	xidation			ering
		n - Pulsed laser deposition – Rapid solid				
		is - Fabrication of nanostructures and mich			-	-
etching-Lithog					e	
Unit:3	CHE	MICAL AND BIOLOGICAL METHOD	DS	18 hou	rs	
Polyol route –	Colloidal prec	ipitation - Sol-Gel process- Chemical pre	cipitation	n: Norm	al and H	Rever
reactions- Rol	e of surfactar	nt – Hydrolysis: Reaction kinetics – Hy	drothern	nal – S	olvothe	rmal
		route: DC and Pulsed electrodeposition				
	-	cal Methods: synthesis of nanomaterials u			-	
	-	tic bacteria for natural synthesis – role of	-			
phytoremediat	ion	-				

Unit:4

SPECIALIZED TECHNIQUES

18 hours

Electrophoretic deposition – Chemical Vapour deposition: Wet and Dry oxidation process –Dip and Spin coating process – Successive ionic layer adsorption and reaction (SILAR) – Spray and Flame spray pyrolysis - Self assembly.

Unit	::5	IMPORTANCE OF MORPHOLOGY	18 hours
Crys	tallites Witl	h Various Morphologies – Polymorphs – Surface A	spect Ratio – Grain size
distr	ibutions – S	urface area - Current Status and Forecast for The Future	Trends
		TOTAL LECTURE HOURS	90 hours
Text	t Book(s)		
1	Springer	Handbook of Nanotechnology- Ed. by B. Bhushan, Sprin	nger-Verlag (2004)
2	Vacuum	Technology, A. Roth, North- Holland Pub., 2 nd Edition (1	982)
3		nistry of Nanomaterials: Synthesis, Properties and Applicetham (Eds), Wiley-VCH Verlag (2004)	cations, C.N.R. Rao, A.Muller,
4	B.S. Mur	ty and S. Ranganathan, International Materials Reviews	(1998) Vol. 43(3), 101
Refe	erence Book	x (s)	
1.	Nanopar	icles And Nanostructured Films Preparation, Characteriz	ation And Applications,
	Janos H.	Fendler (Ed) Wiley (1998)	
2.	H. Gleite	r, Progress In Materials Science, Vol.33, p.223 (1989)	
Rela	ted Online	Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	NPTEL:	Nanotechnology, Science and Applications	
	https://np	otel.ac.in/courses/113/106/113106093/	
2	YOUTU	BE: Introduction to Nanomaterials	
	https://w	ww.youtube.com/watch?v=qUEbxTkPIWI	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1 Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
C05	3	3	3	3	2
Weightage	15	15	15	15	10
Weighted percentage (rounded of) Course Contribution to Pos	3	3	3	3	2

SEMESTER-II

CORE-VI

Course Code		Characterization	Credits: 4				
	Techniques of	Nanomaterials –I					
Lecture Hours : (L)		Lab practice Hours: (P) per	Total: (L+T+P)				
per week	Hours :	week	Hours per week				
	(T) per week						
Course Category:	Year &	Admission Year:					
	Semester :						
Pre requisite:	Basic knowledg	ge with concepts of physics.					
Links to other course	es						
Learning Objectives	: 1. Unders matter	stand the properties of the light	nt and interaction with				
		guish the nanomaterials and b	ulk materials using X-ray				
	-	e the chemistry of the materia	•••				
	-	standing the mechanical prope					
		e magnetic and electrical pro-					
	o. Stady al						
Course Outcomes	1. Understanding	the purpose of characterization	on for the given materials				
	2. Explore the properties of nanomaterials for the particular applications						
	1 1	3. Understanding the principles of characterization techniques					
		4. Study the properties of nanomaterials					
		5. Understanding the instrumentation involved in the characterization					
	technique.						
	6. Understanding	6. Understanding the suitability of the characterization for the particular					
	material.						
	7. Learn the inter	pretation of the results obtain	ed from thecharacterization				
		Units					
Ι	Unit I Introductio	n to spectroscopy					
]	Basic principles	and applications of UV-Vi	s-NIR, FTIR, FT-Raman,				
	Photoluminescence	e, NMR, ESR and Light Scatt	ering methods.				
II	[]nit II X _ ray too	chniques					
		U nit II X – ray techniques K-ray powder diffraction –Quantitative determination of phases; Structure					
	• •	-	-				
	nalysis, single crystal diffraction techniques - Determination of accurate attice parameters - structure analysis-profile analysis - particlesize analysis						
	sing Scherer formula- Particle Size Analyzer- Ellipsometry- thickness						
	Empsometry unexness						
	neasurements						
	Unit III Electron Spectroscopy						
	X-Ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, X-Ray						
	Characterization of Nanomaterials - EELS– EDAX and WDA analysis -						
	pplications to nanomaterials characterization						

IV	Unit IV Mechanical properties measurement					
	Nanoindentation principles- elastic and plastic deformation -mechanical					
	properties of materials in small dimensions- models for interpretation of					
	Nanoindentation load-displacement curves- Nanoindentation data analysis					
	methods-Hardness testing of thin films and coatings- MD simulation of					
	nanoindentation.					
V	Unit IV Magnetic and electrical properties measurement					
	Vibration Sample Magnetometer, Impedance Spectroscopy- PPMS, -					
	Measurement of Magnetic and electrical properties of nanomaterials.					
Reading List(Print	1. Introduction to Spectroscopy					
and Online)	dl.iranchembook.ir > ebook > organic-chemistry-2753					
	2. An Introduction to Surface Analysis by XPS and AES Wiley					
	<i>onlinelibrary.wiley.com</i> > doi > book					
	3. EPMA - electron probe microanalysis					
	<pre>www.ems.psu.edu > harbin > EPMA.ppt.pdf</pre>					
	4. <u>Physical Property Measurement System</u>					
	www.mrl.ucsb.edu > instruments > hcapPPMS					
mmendedTexts	References:					
	1. Elements of X-ray Diffraction B. D. Cullity, Addison Wesley, 1977					
	2. Transmission Electron Microscopy: A Textbook for Materials					
	Science					
	David B Williams, C Barry Carter, (1996) Plenum Press, New York					
	3. Impedance Spectroscopy: Theory, Experiment, and Applications,					
	E. Barsoukov and J. Ross Macdonald (Editors) (2000) John Wiley &					
	Sons (P)Ltd.					
	4. Fundamentals of Fourier Transform Infrared Spectroscopy,					
	Brian C Smith, (1995) CRC Press					
	5. Nanoindentation, By Anthony C Fischercripps, Anthony C.,					
	Springerscience and Bussiness media publications, 2011					
	6. Nanomaterials, Nanotechnologies and Design: An Introduction for					
	Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, Elsevier,					
	2009.					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
C03	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

Mapping with Programme Specific Outcomes

SEMESTER-II

Elective Course-3

Course Code	Course Name: INTRODUCTION TO Credits: 3					
	NANOTOXICOLOGY					
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)			
per week	Hours:	week	Hours per week			
	(T) per week					
Course Category:	Year &	Admission Year:				
	Semester:					
Pre requisite:	The students v	hould know about the				
	fundamentals of	f biological cell and tissues a	nd also the basic			
	knowledge					
	in materials.					
Links to other courses						
Learning Objectives:	The main objectives of this course are to:					
	1. Understanding the basic of Toxoicology and Nano science and					
	differentiate between nanomaterials and bulk materia					
	e theoretical and practical n					
	 Comprehending the novel function resulted from the nanoscale structures using scientific and technological principles in Nano toxicology 					
	4. Critical nanoto	lly assess and outline xicology	the nanoscience for			
		trate the new properties or cance in toxicology	f Nano materials and its			

Course Outcomes	On the successful completion of the course, student will be able to					
	1. Understanding the basic of Toxoicology and Nano science and differentiate between nanomaterials and bulk materials					
	2. Evaluate and critically review the theoretical and practical aspects of Nano materials application					
	3. Comprehending the novel function resulted from the nanoscale structures using scientific and technological principles in Nano toxicology					
	4. Critically assess and outline the nanoscience for nanotoxicology					
	5. Demonstrate the new properties of Nano materials and its significance in toxicology					

Course Objectives	1. Learn the types of hazard and its application-				
	2. Understand the importance of nanotoxicant and its effect inhealth -				
	3. Study the basics of biomolecules and its application in nanotoxicology -				
	4. Comprehend the effect of Nanotoxicology –				
	5. Understand the response of nanomaterials in Nano engineering devices and evaluate its significance -				
Units	Total -48hrs				
Ι	AREAS OF TOXICOLOGY				
	Introduction- definition of terms- areas of Toxicology- Toxicant- Types of Toxic				
10h	hazardous materials- Physical Hazard, Chemical hazard, Biological Hazard, Toxic metabolites, Assessment of Risk- Risk assessment of Nanoparticles and Human Health.				
II	NANOMATERIALS				
	Nanoparticles in the Environment- Nanomaterials in the atmosphere, Particle				
10h	Characterization, Types of Transport, Routes of Exposure, Deposition mechanism, Potential mechanism of Nanosize particle toxicity, Passage through biological Membranes, toxic kinetics.				
III	NANOPOLLUTION				
	Nanomaterials in environment, Source of pollution, Transport through environment.				
IV	NANOMATERIAL EXPOSURE MEASUREMENT				
	Nano sized materials exposure to human, Measurement methods, Threshold values-permissible limits.				
V	PORTALS OF NANOMATERIALS ENTRY				
1011	Types of portals entry, Target tissue, Routes of entry of nano pollutants, Absorption, Distribution mechanism on target tissue.				
Reading List(Print	https://www.intechopen.com/books/toxicology-new-aspects				
and Online)					
Recommended	1. Nanotechnology: Health and Environmental Risks, Jo Anne				
Texts	Shatkin, CRC Press, 2008				
	2. Nanotechnology: Environmental Health and Safety, Risks, Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010				
	Principles and Methods of Toxicology. Edited by A.W. Hayes. Taylor and Francis, 2008.				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

SEMESTER-II

Elective course-4

Course Code	Course Name:	Nanobiotechnology	Credits 2			
Lecture Hours : (L) per week	Tutorial Hours : (T) per week	Lab practice Hours : (P) per week	Total: (L+T+P) Hours per week			
Course Category:	Year & Semester :	Admission Year:				
Pre requisite:	The Student should have the fundamental knowledge in biomaterial Biological Cell, functions of cell, biochemistry of biomolecules and relation to cell function					
Links to other courses						
Learning Objectives:	 The main objectives of this course are to: Acquire the knowledge of the cell biology and application. Explaining the role of cell organelles, metabolism, and bioenergetics. Understanding the about the morphology, structure, of DNA, RNA and different types of nucleic acid. Gaining the knowledge about of glucose, and fatty acid metabolism. Evaluation and comparison of the different enzyme role energy production2 					
Course Outcomes	 On the successful completion of the course, student will be able to Understanding the basic of Biology and Nano science and differentiate between Nano materials and bulk materials Evaluate and critically review the theoretical and practical aspectsof Nano materials application. Explain the concepts in Nano biotechnology Critically assess and outline the nanotechnology for all areas of application Demonstrate the new properties of Nano materials for next generation needs 					
Course Objectives	 of Implan 2. Learn the and tissue 3. Recognize Nanostruct 4. Study the and its me 5. Know the applicatio 6. Understar 	nd the basics of bioinspired str ts in Nanobiotechnology- importance of bioactive nano- engineering e the significance of Biomole ctures – applications of Polymer nanof erits and demerits- importance of vesicles and li n in drug delivery – nd the overall basics of biomo- iotechnology	omaterials in bone grafting ecules in the fabrication of fibers in Tissue engineering apids in sensor and also its			

35

Units	Total -48hrs
I 9h	Bio-mineralised Inorganic Nanomaterials – Nanostructures and Dynamicsof Biocompatible surfactant monolayers and bilayers – Bio-interface, Bio- conjugation, Bio-matrix based on bioinspired phospholipids polymers.
II 10h	Self-assembly of ionic-complementary peptides and their applications in nano-biotechnology –from nanocluster assays to optical biochips for nano- biotechnology –bioactive nanomaterials in bone grafting and tissue engineering- inorganic /polymer nano composites for dental restoration
III 9h	and bone replacement applications. DNA based artificial nanostructures: fabrication, properties and applications – Nucleic acid engineered nanomaterials and their applications- RNA, DNA
IV 10h	Protein patterning for applications in biomaterials and biodevices. Polymers nanofibers and their applications in bioengineering – functional polymers for bone tissue engineering applications – applications of nanotechnology in tissue engineering
V 10h	Vesicles and liposomes in sensor technology –Self-assembling nanostructured injectable polymeric gels for drug delivery - Engineering surface erodable polyanhydrides with tailored microstructure for controlled drug and protein delivery
Reading List(Print and Online)	
Recommended Texts	 Challa S.S.R. Kumar (Ed) Biological and pharmaceutical nanomaterials : Wiley – VCH Verlag GmbH& Co, KgaA. Ninmeyer C.M, Mirkin C.A (Eds) 2005. Nanobiotechnology H.S. Nalwa (Ed) Handbook of Nanostructured Bioaterials and their applications in Nanobiotechnology, American Scientific Publishers.2005

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Mapping with Programme Specific Outcomes

Course Code	Course Name N	Nanoscience Practical II	Credits: 4			
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week			
Course Category:	Year & Semester:	Admission Year:				
Pre requisite:	Fundamental and theoretical knowledge on preparation and characterization techniques					
Links to other courses						
Learning Objectives:	 Acquire pra methods to f Apply the p the material Provides op approaches Master equipments appropriate Understand 	 The main objectives of this course are to: 1. Acquire practical skills in the use of instruments, technologies and methods to fabricate nanomaterials and their characterization 2. Apply the practical knowledge in understanding the structural of the materials 3. Provides opportunities to synthesize the materials using different approaches 4. Master the technical skills in handling lab equipments, characterizing the acquired data and analyze using appropriate tool 5. Understand the role of environmental conditions on the preparation of nanomaterials 				

Practical-II	Synthesis and Characterization of Biomolecules and Biomaterials
	1. Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their UV-VIS Absorption Studies.
	2. Synthesis of Gold Nanoparticles by Chemical Reduction Method and Their UV-VIS Absorption Studies.
	 Synthesis of Silver Nanoparticles by Polyol Method and Their UV-VIS Absorption Studies.
	 Synthesis of zinc oxide Nanoparticles by sol-gel method and characterize using UV-VIS Absorption Studies.
	5. Synthesis of silver nanoparticles by using plant extract and UV vis absorption studies
	6. Synthesis of silver nanoparticles using bacteria and
	7. Study of chemical kinetics using UV- vis spectroscopy.
Reading List(Print	1. Fundamentals Of Analytical Chemistry - Skoog, West and Holler,
and Online)	Saunders College, Publishing, VII Ed, (1996).
	2. Text Book Of Quantitative Inorganic Analysis – A.I. Vogel, Elbs,
	IVEd., (1985).
	3. Physical Chemistry, A. Alberty And R.J. Silbey
mmendedTexts	1. Inorganic Chemistry: Principles of Structure and Reactivity – J.E.
	Huheey, E.A. Keiter and R.L. Keiter, IVEd.
	2. Physical Chemistry, Atkins
	3. Text Book Of Quantitative Chemical Analysis – A.I. Vogel, VI
	Ed, Pearson Education Ltd, 2001

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low – 1

SEMESTER-III Core-VII

Course Code	Course Name:	NANOELECTRONICS	Credits: 4				
	AND NANOSENSORS						
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)				
per week	Hours:	week	Hours per week				
	(T) per week		_				
Course Category:	Year &	Admission Year:					
	Semester:						
Pre requisite:	The student sho	ould have the fundamental kr	nowledge in biomaterials,				
	Biological Cell,	functions of cell, biochemist	try of biomolecules and its				
	relation to cell f	relation to cell function					
Links to other courses							
Learning Objectives:	The main object	tives of this course are to:					
	1. Learning N	New Perspective in Nanoelectr	roncs				
	2. Explaining t	he size and shape enabled pro	operties of nanomaterials				
	3. Understandi	ng the functioning of various	electronic devices.				
	4. Understandi	ng and assessment of electror	nic properties for sensor				
	development an	d application.					
	5.Compare and	d evaluate the nano enabled e	lectronic properties for				
	development of						
	1	ization of nanoscale electroni	c phenomena for societal				
	applications		1				

	Units
Ι	Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law-
	Density of states- Fermic Function- Types of Conductance- Ballastic
	Conductance- Resistance: Ballistic to Diffusive- Nanotransistors
II	SEMICONDUCTOR NANODEVICES
	Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling
	Transist-or - Single-Electron Transistors; Nanorobotics and
	Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs-
	CNT And Graphene FET, Si NW FET.
III	ELECTRONIC AND PHOTONIC MATERIALS
	Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb
	Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures
	Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and
	Their Applications.
IV	NANOSENSORS BASICS
	Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro
	Fluids, MEMS And NEMS, Packaging and Characterization of Sensors,
	Method of Packaging At Zero Level, Dye Level And First Level, Thermal
	Energy Sensors, Temperature Sensors, Heat Sensors-
V	NANOSENSORS
	Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current
	Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism
	Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow
	Sensors, Position Sensors - Chemical Sensors - Optical and Radiation
	Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging
	and Method of Packaging.
0	1. Nano Electronics And Information Technology, W. Ranier, Wiley
and Online)	(2003).
	2. Nano Systems, K.E. Drexler, Wiley (1992).
mmendedTexts	1. Introduction To Molecular Electronics, M.C. Pettey
	2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And
	Charles
	P. Poole Jr., Wiley Interscience (2006)
	3. Nanotechnology Enabled Sensors, Kouroush Kalantar – Zadeh,
	Benjamin Fry, Springer (2007)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low - 1

SEMESTER III Core-VIII PROPERTIES OF NANOMATERIALS

		PROPERTIES OF NANOMATERIALS								
			Credits							
Exp	ected Cour	se Outcomes:								
On t	he successf	al completion of the course, student will be able to:								
1		Understand fundamental concepts and influence of grain size and morphology on properties of nanomaterials								
2	· · ·	Apply the gained subject knowledge towards understanding the mechanisms involved in functional materials								
3	Evaluate a with bulk	and understand the nanomaterials superior properties by com materials	nparing							
4	•	cquired knowledge and understanding on effect various pro s and its needs for technological advancements	ocessing							
Unit	t:1	ELECTRONIC PROPERTIES	18 hours							
- De	pletion regi	Shape in Electronic Properties, Band Structures, Brillouin 2 on - Confinement and Transport in Nanostructure Types of allistic Transport - Coulomb Blockade.								
Unit	t:2	MAGNETIC PROPERTIES	18 hours							
Mag tunn	netization a eling - Mag	ee - Surface magnetism - Magnetic anisotropy and do and nanostructures - Substrate effects, Oscillatory exchan netism in reduced dimensional systems: zero, one and two – MR, BMR and CMR.	omains in small particles ge coupling, Spin polariz							
Unit	t:3	DIELECTRIC PROPERTIES	18 hours							

Carrier transport through grain boundaries –Impedance spectroscopy – Grain boundary Schottky potential barrier height (Φ_b) model: effect of bias and temperature – Voltage tunable capacitors - Dielectric breakdown - Nanodielectrics: future insulating materials - Ferroelectrics and Multiferroics

Unit:4	OPTICAL PROPERTIES	18 hours								
Band Gap Engineering - Morphology and size effects of nanocrystalline semiconductors and metals –										
Effective mass	approximation theory - Nanoshells - Crystallite size	distribution estimation from								
absorbance – Flu	orescence: Stokes and Anti Stokes Shifts – Up and Dov	vn conversion.								
Unit:5	MECHANICAL PROPERTIES	18 hours								
Micro Hardnes	s, Nanoindentation, Fracture Toughness, Superp	plasticity, Plastic Nature of								
Nanoceramics, N	Janomembrances - Inter Connected Pores - Bulk Nanost	ructured Materials - Influenced								
Porosity. Hall-	Petch Relation, Microstructure - Dislocation Inte	eractions at Low and Hig								
Temperatures; E	Effects of Diffusion on Strength and Flow of Materials	s; Methods of Enhancing or								
Retarding Diffus	ion; Grain Boundary Sliding and Migration.									
Unit:6	CONTEMPORARY ISSUES	2 hours								
Export Locturas	Online Seminars – Webinars	•								

	TOTAL LECTURE HOURS	90 hours
Tex	t Book(s)	
1	Springer Handbook of Nanotechnology- Ed. by B. Bhushan, S	Springer-Verlag (2004)
2	Magnetic Materials: Fundamentals and Applications by Nicola	a A. Spaldin, Cambridge
	University Press, 2nd Edition, (2018)	
3	The Chemistry of Nanomaterials: Synthesis, Properties and Ap A. K. Cheetham (Eds), Wiley-VCH Verlag (2004)	pplications, C.N.R. Rao, A.Muller,
4	Dan Guo et al, Journal of Physics D: Applied Physics (2018)	Vol. 47, 013001
Refe	erence Book(s)	
1.	Impedance Spectroscopy: Theory, Experiment, and Applications, E I Wiley (2018)	Barsoukov and JRoss Macdonald
2.	H. Gleiter, Progress In Materials Science, Vol.33, p.223 (1989)	
Rela	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites	etc.]
1	NPTEL: Defect Structure & Mechanical Behaviour of Nanom	aterials
	https://www.youtube.com/watch?v=bwZW96c743A	
2	YOUTUBE: Introduction to Nanomaterials	
	https://www.youtube.com/watch?v=qUEbxTkPIWI	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low – 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

SEMESTER-III

Core - IX

Course Code	Course Name:	Characterization	Credits: 4						
	Techniques of	Nanomaterials –II							
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)						
per week	Hours:	week	Hours per week						
	(T) per week								
Course Category:	Year &	Admission Year:							
	Semester:								
Pre requisite:	The student sh	ould have the fundamental k	nowledge in biomaterials,						
	Biological Cell	, functions of cell, biochemis	try of biomolecules and its						
	relation to cell	function							
Links to other cours	ses								
Learning Objectives	S: The main ob	jectives of this course are to:							
		ze the nanomaterials to unders	1 00						
		and nanostructure of material							
		and the microstructure of mat							
		the thermal behavior of the na							
	5. Studyin	g bio-materials using proper t	cools						
Course Outcome	1 Understanding	the nurness of characterizati	on for the given meterials						
	-	. Understanding the purpose of characterization for the given materials							
		 Explore the properties of nanomaterials for the particular applications Understanding the principles of characterization techniques 							
		. Study the properties of nanomaterials							
	• •	Understanding the instrumentation involved in the characterization							
	-	technique.							
		. Understanding the suitability of the characterization for the particular							
	-	material.							
		Learn the interpretation of the results obtained from the characterization							
		Units							
Ι	Luit I Mormholo								
I	Unit I Morpholo	8	and Sample propagation						
	- ·	nciples, Overview of Instrumentation and Sample preparation, perimental techniques adopted in: Scanning Electron Microscopy: SEM							
	-								
		d FESEM -Transmission Electron Microscopy (TEM) – HRTEM-							
		plication for analysis of Nanomaterials.							
II	Unit II Materials	defects studies							
		anning Tunnelling Microscopy (STM), Atomic Force Microscopy							
	-	t-contact- Tapping- conduction	1.1						
		l Microscopy; Scanning	•						
		licroscopes MFM)- Chemical							
	-	alysis of nanomaterials.							

III	Unit III Microscopic characterization
	Optical microscopes- Use of polarized light microscopy – Phase contrast
	microscopy – Interference Microscopy – hot stage microscopy - surface
	morphology – Etch pit density and hardness measurements- Confocal
	Microsocopes.
IV	Unit IV Thermal analysis
	Principle and Instrumentation of Thermogravimetry; Differential Thermal
	Analysis and Differential scanning calorimetry-Importance of thermal
	analysis for nanostructures.
V	Unit V Bio-materials characterization
	New Advances and challenges in biological and biomedical materials
	characterizations- Dynamic light scattering spectroscopy. Confocal
	Microscopes - Confocal Raman – Application in Nanobiotechnology.
	Fluorescence Microscope
Reading List(Print	www.technologynetworks.com > sem-vs-tem-331262
and Online)	onlinelibrary.wiley.com > abs > 9780470022184.hmm319
und Omme)	www.umassmed.edu > maps > confocal-explanation
	www.umassmed.edu / maps / comocar-explanation
mmendedTexts	References:
	J.Goldstein, D. E. Newbury, D.C. Joy, and C.E. Lym, "Scanning
	Electron Microscopy and X-ray Microanalysis", 2003.
	S.L. Flegler, J.W. Heckman and K.L. Klomparens, "Scanning and
	Transmission Electron Microscopy: An Introduction",
	WH Freeman & Co, 1993.
	P.J.Goodhew, J.Humphreys, R.Beanland, "Electron Microscopy and
	Analysis",
	R.Haynes, D.P.Woodruff and T.A.Talchar, "Optical Microscopy of
	Materials", Cambridge University press, 1986.
	R.M.Rose, L.A.Shepard and J.Wulff, "The Structure and Properties of
	Materials", Wiley Eastern Ltd,

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

SEMESTER-III Elective course – 5

Course Code	Course Name:		Credits: 3			
Lecture Hours: (L) per week	Nanobiotechno Tutorial Hours: (T) per week	logy Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week			
Course Category:	Year & Semester:	Admission Year:				
Pre requisite:		ould have the fundamental kn materials synthesis, sensors a	•			
Links to other courses	5					
Learning Objectives:	 Synthesis Isolation Summariz Evaluation devices Gain theorem Understar Developm Learn abox 	 Isolation and cultivations of magnetosomes Summarize suitability of nanomaterials for medical application. Evaluation and critical assessment of nanomaterials as medical devices 				
	therapeutic age	nts				
		Units				
Ι	Biosynthesis of Nanoparticles : Biomineralization - Microbial Nanoparticle production. Biofunctionalizaion of gold nanoparticles – phospholipids polymer nanoparticles – magnetic nanoparticles – CNT – metallic nanoparticles					
	Magnetosomes: Magnetosomes and their biomedical applications – Magnetosome formation - cultivation of magnetotactics Bacteria – Characterization of Magnetosomes - Magnetic cells, isolated magnetosomes.					
III	Biosensors using based electrocher Quantum dot-bas	Applications of Biosensors: Biosensors using CNT- FET; DNA detection – glucose detection, CNT based electrochemical biosensor – optical biosensor with metal nanoparticles. Quantum dot-based sensors-Dendrimer based biosensor, regent biosensor based on nanoparticles.				

IV	Medical Devices:							
	Imaging, implantable sensors, cell specific gene therapy, DNA chips and							
	micro arrays, Surface immobilized protein nano structures Forensic							
	Applications: Collection and analysis of evidence of different types of crime scenes including drugs. DNA analysis blood splattering serology							
	scenes including drugs, DNA analysis, blood splattering, serology,							
	toxicology,							
V	Pharmaceutically important nanomaterials							
	Drug Nanoparticles- Structure and Preparation, Liposomes, Cubosomes and							
	Hexosomes, Lipid based Nanoparticles-Liquid nanodispersions- Solid Lipid							
	Nanoparticles (SLP)- Biofunctionalsiation of SLP, Charatcterisation-							
	Nanoparticles for crossing biological membranes. Fundamentals-							
	Physicochemical Principles of Nanosized Drug Delivery Systems-Nanotubes,							
	Nanorods, Nanofibers, and Fullerenes for Nanoscale Drug Delivery, Carbon							
	nanotubes biocompatibility and drug delivery							
Reading List	 Nano bio-technology: Concepts, Applications and Perspectives, Christ of M. Niemeyer, Wiley, 2004 							
(Print and online)	 Microcapsules and Nano particles in Medicine and Pharmacy; M. 							
	Donbrow (Editor), CRC Press, 1992							
	 Liposomes in Biological Systems; G. Gragoradias & C. Allison, Wiley; 1980 							
	4. Methods in Enzymology, Vol. 112,							
	 DNA Arrays: Technologies and experimental strategies ed. E.V. Grigorenko, CRC Press 2002 							
Recommended	1. Robert.W.Kelsall, Ian.W.Hamley, Mark Geoghegan, Nano Scale Science							
Texts	And Technology, John Wiley and son, ltd., 2005							
	 H.Fujita (Ed), Micromachines As Tools For Nanotechnology, Springer, 2003 							
	3. Mick Wilson Kamali Kannangara, Geooff Smith Michelle Simmons, Urkhard Raguse Nano Technology, Overseas India private Ltd., 2005.							
	4. Gunter Schmid (Ed), Nano Particles, Jhon wiley and sons limited, 2004							
	5. K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low – 1

Elective course-5

Course Code	Course Name:	Biomaterials and	Credits: 2			
	Nanobiotechno	logy for Tissue Engineering				
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)			
per week	Hours:	week	Hours per week			
	(T) per week					
Course Category:	Year &	Admission Year:				
	Semester:					
Pre requisite:	The students	who are taking this course	should know about the			
-	fundaments of	biomaterials, basics in biolo	gical cell, tissues and the			
	metabolism of e	carbohydrates and Proteins a	nd also able to understand			
	the mechanism	the mechanism of cellular function				
Links to other courses						
Learning Objectives:	The main objectives of this course are to:					
	Learn the types of biomaterials, biomaterial used in implant					
	andits application in orthopedics and dental-					
	**	Understand the importance of biomaterials used for cartilage and				
		nt and its mode of failure-				

Elective course-3

Course Outcomes	On the successful completion of the course, student will be able to				
	• Understanding the basic of Biology and Nano science and				
	differentiate between nanomaterials and bulk materials				
	• Evaluate and critically review the theoretical and practical aspects				
	of Nano materials application				
	• Comprehending the novel function resulted from the nanoscale				
	structures using scientific and technological principles in Nano				
	biotechnology				
	• Critically assess and outline the nanotechnology for all areas of application				
	 Demonstrate the new properties of Nano materials for next 				
	generation needs				
	• Study the basics of tissue engineering and its application in vital				
	organs and mode of bladder implant failure-				
	• Comprehend the biological response to nanomaterials –				
	Understand the response of proteins in tissue regeneration and evaluate the				
	significance of host defense mechanism-				
Units	Total -48hrs				
I	MATERIALS FOR IMPLANT				
1	Orthopedic implants – material s used – modes of failure – wear debris,				
10h	stress and strain imbalances at the tissue implant interface. Dental: Dental				
	-				
	materials used – modes of dental implant failure – debris, stress and strain				
	imbalances at the tissue implant interface				
II	CARTILAGE IMPLANT				
10h	Cartilage materials used – modes of cartilage implant failure –wear debris,				
ION	stress and strain imbalances at the tissue implant interface; Vascular				
	materials used – modes of vascular implant failure – wear debris; stress				
	and strain imbalances at the tissue implant interface				
III	BLADDER IMPLANT				
	Bladder overall view, Bladder implant materials used – modes of bladder				
8h	implant failure – stress and strain imbalances at the tissue implant interface				
IV	BIOLOGICAL EFFECT OF NANOMATERIALS				
	Biological response of Nanomaterials used as implants – biological				
10h	response of implanted materials – desirable and undesirable reactions of				
	the body with implanted materials: Protein interactions with implanted				
	Materials				
V	ADVANTAGE OF NANOMATERIALS				
¥	AD VANTAGE OF MANOMATERIALS				
10h	Advantages of Nanomaterials used as implants - cellular recognition of				
	Proteins Adsorbed on material surfaces – adhesion – migration				
	differentiation – Cellular Extra cellular Matrix deposition leading to tissue				
	regeneration – foreign-body response – inflammatory response				

Reading List(Print	https://www.verywellhealth.com/tissue-engineering-4580368					
e ·	https://www.veryweinieutitieoin/issue engineering 1900500					
and Online)	https://www.liebertpub.com/doi/10.1089/ten.tec.2019.0344					
	III.ps.//www.iiebeitpub.com/doi/10.1089/ten.tec.2019.0344					
Recommended	1. William A. Goddard, Sergey Edward Lyshevski, Donald W.					
Texts	Brenner (Ed) Handbook of Nanoscience, Engineering and Technology					
	CRC press 2003					
	2. Joachim Schummer, Davis Baird (Ed) Nanotechnology					
	Challenges: implications for philosophy, Ethics and society ; World					
	scientific ; 2006					
	3. William Sims					
	Bainbridge, Mihail C. Roco (Ed) Societal implication of Nanosciences					
	and Nanotechnology;Springer;2001					
	4. Jon J. Kellar (Ed) Functional fillers and nanoscale minerals;					
	new markets/ new horizonsSME science; 2006					
	5. Davis Baird, Alfred Nordmann, Joachim Schummer (Eds)					
	Discovering the nanoscale; IOP press; 2004					
L						

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low – 1 Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Course Code	Course Name N	Nanoscience Practical III	Credits: 4		
Lecture Hours: (L) per week Course Category:	Tutorial Hours: (T) per week Year &	Lab practice Hours: (P) per week Admission Year:	Total: (L+T+P) Hours per week		
Pre requisite:	Semester: Fundamental an characterization	d theoretical knowledge on p	preparation and		
Links to other courses					
Learning Objectives:	 Acquire andmeth Apply a ofthe ma Provide different Master equipm appropri Understa 	es opportunities to synthesize capproaches the technical skills in eents, characterizing the acquir	s and their characterization nderstanding the structural the materials using handling lab ed data and analyze using		

Part:1	Chara	acterization of CompoundNanomaterials	
	1. 2. 3. 4.	Synthesis of TiO ₂ Nanoparticles by Sol-Gel Method and Characterize Using XRD And SEM Analysis. Synthesis of Ceria Nanoparticles and Characterize Using XRD And SEM Analysis. X-Ray Diffraction Studies of Synthesised of Tio ₂ Nanoparticles And Measuring The Crystallite Size. Synthesis Of Ceria Nanoparticles by Co-Precipitation Method.	
Part:2	Chara	acterization of Specific Surface Properties	
	1.	SERS Studies Of Gold and Silver Nanoparticles	
	2.	Synthesis Of Quantum Dots and Photoluminescence Studies.	
	3.	Characterization of Carbon dots using UVSpectroscopy	
		Band gap studies of Metal oxide semiconductors using UV-Vis Spectroscopy	
Reading List(Print	1.	Fundamentals Of Analytical Chemistry - Skoog, West and	
and Online)		Holler, Saunders College, Publishing, VII Ed, (1996).	
	2.	Text Book Of Quantitative Inorganic Analysis – A.I. Vogel, Elb IVEd., (1985).	os,
	3.	Physical Chemistry, .A. Alberty And R.J. Silbey	

Recommended	4. Inorganic Chemistry : Principles Of Structure And Reactivity – J.E.
Texts	Huheey, E.A. Keiter and R.L. Keiter, IVEd.
	5. Physical Chemistry, Atkin
	6. Text Book Of Quantitative Chemical Analysis – A.I. Vogel, VI
	Ed, Pearson Education Ltd, 2001

Lab	Manuals
1	Das, S. and Saha, R. 2020. Microbiology Practical Manual. CBS Publishers and
	Distributors
	(P) Ltd., New Delhi, India.
2	Arora, B. and Arora, D.R. 2009. Practical Microbiology. 2 nd ed. CBS
	Publishers and
	Distributors (P) Ltd., New Delhi, India.
3	Jha, D. K. Laboratory Manual on Plant Pathology. 2 nd ed. Pointer Publishers,
	Jaipur, India.
4	Chmielewski, J. G. and Krayesky, D. 2013. General Botany
	laboratory Manual.
	AuthorHouse, Bloomington, USA.
5	Jha, D. K. 2018. Laboratory Manual on Plant Pathology (English). Pointer
	Publishers, Jaipur.
6	McMahon, K., Levetin, E. and Reinsvold, R. 2001. Laboratory Manual for
	Applied Botany.
	McGraw-Hill Education, New York, USA.
7	Bendre, A. M. 2010. A Text Book Of Practical Botany – 1. Rastogi
	Publications, Meerut,
0	India.
8	Sivakumar, K. 2016. Algae- A Practical Approach. MJP Publishers, Chennai, India.
9	Gupta, V.K., Tuohy, M.G., Ayyachamy, M., Turner, K.M. and O'Donovan, A.
	2013.Laboratory Protocols in Fungal Biology: Current Methods in Fungal
	Biology. Springer,
	London, UK.
10	Garg, N., Garg, K. L. and Mukerji, K. G. 2010. Laboratory Manual of Food
	Microbiology.
	IK International Publishing House Pvt. Ltd., New Delhi, India.
11	Morello, J.A., Mizer, H.E., Granato, P.A. 2004. Laboratory Manual and
	Work Book in
	Microbiology. McGraw-Hill Education, New York, USA.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

SEMESTER-IV

Core-XI

Course Code	Course Name:	Biomedical	Credits 4				
	Nanotechnolog	У					
Lecture Hours : (L)	Tutorial	Lab practice Hours : (P) per	Total: (L+T+P)				
per week	Hours :	week	Hours per week				
	(T) per week						
Course Category:	Year &	Admission Year:					
	Semester :						
Pre requisite:	The Student sh	ould have the fundamental ki	nowledge in biomaterials,				
	Biological Cell,	functions of cell, biochemist	try of biomolecules and its				
	relation to cell f	function					
Links to other courses	The Student sho	ould know about the fundame	nts of biological system				
	and also the con	cept of Nano materials fabric	ation technology				
Learning Objectives:	1. Unders	standing the basic of Biocerar	nics in Nano science and				
	differentiate bet	ween nanomaterials and bulk	materials				
	2. Evalua	te and critically review the th	eoretical and practical				
	aspects of Tissu	e engineering methods and its	s application-				
	3. Compr	rehending the novel func	tion resulted from the				
	nanoscale structures using scientific and technological principles in						
	Nano biotechno	-					
	4. Critica	lly assess and outline the nar	otechnology in the area of				
	Drug delivery–	-					

Course Outcomes	On the successful completion of the course, student will be able to						
	 Understanding the basic of Biomedical sciences and Nano scienceand differentiate between nanomaterials and bulk materials 						
	2. Evaluate and critically review the theoretical and practical aspects of Nano materials application.						
	3. Summarize the concepts in Biomedical nanotechnology						
	4. Critically assess and outline the nanotechnology for all areas ofbiomedical application						
	 Demonstrate the new properties of Nano materials for next generation needs 						
Units	Total- 90hrs						
Ι	BIO CERAMICS FOR IMPLANT COATING						
18h	Calcium phosphates - hydroxy epilates Ti_6Al_4V and other biomedical _{alloy} - implant tissue interfacing – metal organic CVD – use of tricalcium phosphate – biomimetic and solution based processing – osteoporosis osteoplastic – regeneration of bones by using bio compactable ceramics						

II	TISSUE ENGINEERING
16h	Scaffolds for tissue fabrications – materials for scaffolds – materials for
1011	hydrogel scaffolds – scaffolds fabrications technologies – textile
	technologies – particulate –leaching techniques – phase separation – design
	of three-dimensional pore architecture – nano-featured and bioactive
	scaffolds – nano-fiber scaffolds – nanocomposite scaffolds –
	- scaffolds for stem cells – micro and nanopatterned scaffolds - scaffolds
	and stem cells – Engineering biomaterial to control cell function – fibrous
TTT	proteins and tissue engineering
III	DRUG DELIVERY
18h	Diagnosis of diseases, treating and preventing of diseases – targeted for
	drug delivery – ligand coupled nanoparticle features – methods forcoupling
	targeting ligands to nanoparticles - targeting modalities - barriers to
	tumor targeting in vivo – MRI contrast enhancement -
	future line of action – Gene delivery
IV	NANOPHARMACY
18h	Bio interactive hydro gels – PEG coating and surface modifications –PEG
	hyrogels patterned on surfaces - PEG based hydrogels- Nanopharmacy-
	multi-targeted drugs - delivery of nucleic acids- barriers to therapeutic
	applications – interaction of organic molecules
	of the drug with pathological tissue – ligand targeted nanoparticles
	drug delivery
V	NANOMEDICINE
18h	Formation of nucleic acid core particle – protective steric coating – surface
	exposed ligands targeting specific tissues -biocompatible core-shell
	nanoparticles for medicine - configuration of core - shell structure with
	different cores, shells and biomolecules-least toxicity- nanocapsules-
	methods of changing surface characteristics- future prospects.
Reading List(Print	https://link.springer.com/content/pdf/10.10090Fs11834-013-6063-
and Online)	0.pdf
	http://nopr.niscair.res.in/bitstream/123456789/5224/1/IJEB2045(2)2
	0160-165.pdf
Recommended	1. Robert.W.Kelsall, Ian.W.Hamley, Mark Geoghegan (Ed), Nano
Texts	ScaleScience And Technology, John Wiley and son, ltd., 2005
	2. H.Fujita (Ed), Micromachines As Tools For Nanotechnology,
	Springer, 2003
	3. Mick Wilson Kamali Kannangara Geooff Smith Michelle,
	SimmonsUrkhard Raguse, Nano Technology, Overseas India private Ltd.,
	2005.
	4. Gunter Schmid, Nano Particles, Jhon wiley and sons limited, 2004
	5. K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006
	 Malsch, N.H., "Biomedical Nanotechnology", CRC Press. (2005).
	7. Mirkin, C.A. and Niemeyer, C.M., "Nanobiotechnology II: More
	Concepts and Applications", Wiley-VCH. (2007)
	8. Kumar, C. S. S. R., Hormes, J. and Leuschner C., "Nanofabrication
	Towards Biomedical Applications: Techniques, Tools, Applications, and
	Impact", WILEY -VCH Verlag GmbH & Co. (2005).

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

SEMESTER-IV

CORE XII

Course Code Course Name: - INDUSTRIAL Credits: 4								
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week					
Course Category:	Year & Semester:	Admission Year:						
Pre requisite:	The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function							
Links to other courses								
Learning Objectives:	 Identific Summar Interpret needs. Evaluati industrial app 5. Review 	tives of this course are to: eation of industrially relevant rize suitability of nanomateria tation and employment of nar on and critical assessment of plication. the industrial development ar equired functionalities.	ls for industries. comaterials for industrial nanomaterials for various					
Course Outcome	 6. Understanding the role of different nanomaterials and their importance. 7. Development of new combination of nanomaterial based on theirproperties for future needs. 8. Assess the role of nanomaterial for enhancing the application effect. 9. Critically assess nanomaterial ability for making industrial levelapplication. 10. Demonstrate the new properties of nanomaterials for next generationneeds. 							
		Units						
Fal Na Int Qu	brication and nostructures- S egrated circuits	OR NANOSTRUCTURES AN Applications of different ilicon horizontal and vertic s- Sensors- Electro optical os) – QD LASER- Quantum c nd future trends.	types of semiconductor al core shell Nanowires- devices. Semiconductor					

II	NANOSCALE MAGNETIC MATERIALS
	Application In Magnetic Storage Devices - Storing and Reading Device
	- Current Trends of Spin Based Electronic Devices. Optical Storage
	Devices: Near Field Optical Recording- Holographic Data Storage- AFM
	Based Recording Technology.
III	NANO ELECTRO MECHANICAL SYSTEMS
	Overview- Nano-Electromechanical Systems - Fabrication Process- Choice
	of Materials, Performance of Different Structures - Advantages and
	Disadvantages of Different Approaches. Applications In Sensors, Micro
	Actuators - Extension to The Nanoscale.
IV	INDUSTRIAL APPLICATIONS OF NANOMATERIALS
1 1	
	Nanoparticles And Micro Organism, Nano-Materials in Bone Substitutes
	and Dentistry, Food and Cosmetic Applications,
V	INDUSTRIAL APPLICATIONS OF NANOMATERIALS
	Textiles, Paints, Catalysis, Drug Delivery and Its Applications, Biochips -
	Analytical Devices, Biosensors.
	r maryticar Devices, Diosensors.
Reading List(Print	1. Nano Electronics, Parag Diwan and Ashish Bharadwaj, Pentagen Press
and Online)	(2006)
	Principles of Superconductive Devices Aad Circuits, C.W. Turner and
	T. Van Duzer (1981)
	3. Principles of Optical Electronics, A. Yariv, Wiley (1984)
Recommended	1. Introduction To Molecular Electronics, M C Petty, M R Bryce, D Bloor
Texts	(Eds.), Edward Arnold (1995)
	2. Current Opinion In Solid State & Materials Science, D.D.C. Bradley,
	Vol. 1, 789 (1996)
	Nano Electronics And Information Technology, Rainer Waser, Wiely
	(2003)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

SEMESTER-IV

Elective Course-7

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
IV Sem		NANOTECHNOLOGY FOR FOOD AND AGRICULTURE	Elective	2

Credits:	4
Course:	AGRICULTURE
Title of the	- NANOTECHNOLOGY FOR FOOD AND
	 nanomerials preparation and application. Understanding the concepts and techniques in nanotechnology 4. Critically assess and outline the nanotechnology for all areas of application 5. Demonstrate the new properties of nanomaterials for next generation needs
	 Understanding the basic of Nanoscience and differentiate betweennano and bulk materials Evaluate and critically review the theoretical and practical aspects of

Course Objectives	s 1. Define and identify functional materials for food industry.						
U U	2. Understand and describe food and agricultural processes.						
	3. Interpretation and application of the theories and protocols for soil and						
	food nutrient management.						
	4. Differentiate different types of nanomaterials food sensing, nutrient						
	management and packaging application.						
	5. Evaluation and assessment of various functional materials for sensing,						
	nutrient management and packaging processes.						
	6. Development and employment of new nanoenabled functionalmaterials						
	and protocols for societal applications.						
	Units						
	SENSORS FOR SOIL, SEED AND FOOD MONITORING						
	Introduction and Importance, Various Sensing Methods, Chemical and						
	Biosensors, Sensors for Monitoring Soil, Seed and Food, Nanomaterials						
	For Intelligent Sensors.						
	FUNCTIONAL MATERIALS						
	Functional Materials for Food and Agriculture Use - Super Absorbent						
	Polymers, Coatings, Aerosols. Zeolites, Nano-Clays, Nano Emulsion,						
	NANOFERTILIZERS						
	Nanofertilizer, Synthesis and Characterization. Fungicides, Herbicides –						
	Pesticides. Types Of Nano-Formulations – Encapsulation of Pesticides.						
	Release Studies, Smart Delivery, Bio- Efficacy and Bio-Safety.						
	MICRO-NANO ENCAPSULATION						
	Encapsulation – Principles – Micro and Nano-Encapsulation – Release						
	Mechanism – Encapsulation Versus Traditional Delivery Method - Sorption						
	And Release Of Nutrients. Encapsulation Technologies – Extrusion – Spray						
	Chilling – Spray Coating – Spray Drying – Emulsion – Gel Particles.						
	NANOCOMPOSITES AND FOOD PACKAGING						
	Introduction And Scope. Polymer Films and Nano Composites – Bio-Nano						
	Composites - Fabrication Process – Equipments Used - Testing Standards						
	- Nano Material in Food Packaging - Solid And Liquid Food - Safety Issues						
	Of Nano Food Systems						
Reading List	1.Nano and Microencapsulation For Foods, Hae-Soo Kwak, Wiley (2018)						
(Print andonline)							
D							
	1. Nanotechnologies In Food and Agriculture, Mahendra Rai, Caue						
Texts	Ribeiro, Luiz Mattoso, Nelson Duran, Springer (2015)						
	2. Nanotechnology Applications In Food, Alexandru Grumezescu,						
	Alexandra Oprea, Academic Press (2017)						

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

PROJECT (8 credit)

3 20 33 20 33 20