# S.T.HINDU COLLEGE, NAGERCOIL-629002. 

Material by: Dr.T.M.Padmanabhan
Department of Commerce
MS University

## First year B.com.,

## Financial Accounting-II

Unit-V Average Due Date

## ADD:

It is also known as Equated date or mean date-on which single payment is effected instead of several payments due on different dates.

The word interest -loss of interest assuming greater significance in business (credit) transactions

## For eg :

- Arivalagan borrowed money/goods from Mathialagan on different dates and assured to return the consideration on different dates
- If Arivalagan makes payment in advance the result is loss of interest to him
- On the other hand if Mathialagan accepts the payments after the due date the result is loss of interest to him
- To avoid - I mean loss of interest to both parties(lender and borrower) agreeing to settle the payment on such a date in the place of different due dates- a mechanism known as A D D is used.

The following format can be used to solve the problem in general

| Due date | Amount | Days from base date | Product |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |

To use the above format and solve the problem a student need to ponder the following
(the information provided here under can be used by a student to answer theory questions also)
> Read the questions carefully
> Look for intervention of leap year(for feb 29 days \& total 366 days)
> Decide a base date-also known as zero date-any date can be considered as base date-but it is advisable- earlier due date can be taken as zero date
> Due dates generally given in the questions directly -in the case of bills of exchange you need to calculate by recalling your memory pertaining to bills of exchange- three days of grace / if due dates happens to be a public holiday for eg: republic day or Sunday -in such cases the due date is preponed to 1 day in advance- if the due date is announced as a holiday suddenly by the government agency then the immediate next day will be the due date
> Amount due generally directly given in the problem- the need is you have to copy paste in the appropriate column/row
> Find the days of difference between zero date and due dates

## for example:

if the base date is $16 / 01 / 2020$ and due date is 02/04/2020 the days of difference is equal to 77 days (jan 15 days +feb 29 days+march 31days+april 2 days)
> Next step is filling of product column - it means a total of amount due*days of difference
(here product means sum of two digits- you may have different meaning in the Marketing literature)
> Now - total the amount column and product column separately
> Apply the following formula
A D D = base date +/-total sums of product/ total sums of amount

The following illustration help you to understand the mechanism .

## Question

1. Arivalagan borrowed from Mathialagan on different dates and assured to pay on different dates. Now Arivalagan wishes to settle all the amount due to him on a single payment. You are requested to assist him in this regard the details of transaction is as follows

| Borrowed on | Due date | Amount in Rs |
| :--- | :--- | :--- |
| $18^{\text {th }}$ nov 2019 | $3^{\text {rd }}$ jan 2020 | 3000 |
| $1^{\text {st }} \operatorname{dec} 2019$ | $5^{\text {th }}$ feb 2020 | 5000 |
| $28^{\text {th }} \operatorname{dec} 2019$ | $7^{\text {th }}$ april 2020 | 6000 |


| $10^{\text {th }}$ feb 2020 | $9^{\text {th }}$ april 2020 | 3000 |
| :--- | :--- | :--- |
| $1^{\text {st }}$ march 2020 | $15^{\text {th }}$ april 2020 | 3000 |

## Note:

$>$ The first column provides you date on which the borrower received the benefit -in our calculation the first column information is irrelevant

Hence we have to concentrate on column 2 \& 3 alone

We consider base date for our solution is $3^{\text {rd }}$ jan 2020(since it is the earliest due date )

| Due date | Amount in Rs | Days from base date | Product |
| :--- | :--- | :--- | :--- |
| $3^{\text {rd }}$ jan 2020 | 3000 | 0 | 0 |
| $5^{\text {th }}$ feb 2020 | 5000 | $33(28$ days in jan +5 days in feb) | 165,000 |
| $7^{\text {th }}$ april <br> 2020 | 6000 | $95(28$ days in jan+29 days in feb+ <br> 31 days in march+ 7 days in april) | 570,000 |
| $9^{\text {th }}$ april <br> 2020 | 3000 | $97(28$ days in jan+29 days in feb+ <br> 31 days in march+9 days in april) | 291,000 |
| $15^{\text {th }}$ april <br> 2020 | 3000 | $103(28$ days in jan+29 days in <br> feb+ 31 days in march+ 15 days <br> in april) | 309,000 |
|  | 20000 |  | 1335000 |

## Application of formula

A D D = base date +/-total sums of product/ total sums
of amount
A D D $=3^{\text {rd }}$ jan $+1335000 / 20000$
$=3^{\text {rd }}$ jan+66.75 days
$=66.75$ coverted into 67 days
A D D $=3^{\text {rd }}$ jan $+28($ jan $)+29(f e b)+10($ march $)$ days

Therefore, A D D $=10^{\text {th }}$ march 2020

For further clarification contact Dr.T.M.Padmanabhan, Senior faculty, S.T.Hindu College

Mobile:9486418240

